DEPARTEMENT SIVIELE INGENIEURSWESE
DEPARTMENT OF CIVIL ENGINEERING
Version: 13/12/2019

NAGRAADSE STUDIES IN:
- SIVIELE INGENIEURSINFORMATIKA
- KONSTRUKSIE-INGENIEURSWESE EN -BESTUUR
- GEOFTEGNIÈSE INGENIEURSWESE
- PLAVEISELINGENIEURSWESE
- STRUKTUIRINGENIEURSWESE
- VERVOERINGENIEURSWESE
- WATERBOUKUNDE

POSTGRADUATE STUDIES IN:
- CIVIL ENGINEERING INFORMATICS
- CONSTRUCTION ENGINEERING AND MANAGEMENT
- GEOFTECHNICAL ENGINEERING
- PAVEMENT ENGINEERING
- STRUCTURAL ENGINEERING
- TRANSPORTATION ENGINEERING
- WATER ENGINEERING

BROCHURE
POSTGRADUATE STUDIES

BROSJURE
NAGRAADSE STUDIES

2020
Postgraduate studies form a growing part of the activities of the Civil Engineering Department of the University of Stellenbosch. This is necessitated by the changing Civil Engineering industry nationally and internationally, demanding more fundamental insight and technological expertise of Civil Engineers. This brochure provides information on postgraduate study within the Department of Civil Engineering, University of Stellenbosch. It should be read together with the *Calendar (Year book) of the University of Stellenbosch* e. General (Part 1) and the Faculty of Engineering (Part 11), in which the definitive requirements are stated.

Several postgraduate programmes are presented, with as basis programmes those for the Master of Engineering (Research) (Civil Engineering) [M Eng (R)] and Doctor in the Philosophy of Engineering (PhD). Other postgraduate programmes are the PDE, M Eng (Structured) (Civil Engineering) [M Eng (S)] and DEng.

The M Eng (R) is a research based programme, generally requiring full-time study and research over a period of 18-24 months. A research thesis is the end product, but guided study is required to achieve the necessary background for the research process and the assimilation of fundamental knowledge and insight. The M Eng (R) Degree has a total credit value of 180 credits, calculated according to SAQA standards. In the following fields of specialisation within Civil Engineering, a course-based master’s degree, the M Eng (S), is facilitated: Structural Engineering, Port and Coastal Engineering, Geotechnical Engineering, Transportation Engineering and Pavement Engineering. For the M Eng (S) Degree a total credit weight of 180 SAQA credits is indicated, with at least 33,3% of the total credits being awarded to a project and a maximum of 66,7% of the credits awarded to advanced course work. The M Eng (S) provides for part-time studies and as many courses are presented in block format may be completed on a part-time basis.

The language used for postgraduate studies, particularly in the case of coursework, is in line with the strategic framework of the University to be language-friendly. English and Afrikaans are used as the languages of instruction. Postgraduate courses are taught in English. For practical considerations, this brochure is presented in English.

VOORWOORD

Nagraadse studie vorm ‘n steeds toenemende deel van die aktiwiteite van die Departement Siviele Ingenieurswese, Universiteit van Stellenbosch. Dit word genoodsaak deur die veranderende nasionale en internasionale nywerheid, waarvoor steeds meer fundamentele insig en tegnologiese spesialisering van siviele ingenieurs geërf word. Hierdie brosjure bevat inligting oor die programme vir nagraadse studie aan die Departement Siviele Ingenieurswese, Universiteit van Stellenbosch. Dit moet gelees word saam met die *Jaarboek van die Universiteit van Stellenbosch nl. Algemeen (Deel 1) en die Fakulteit van Ingenieurswese (Deel 11)*, waarin die bepalende vereistes gestel word.

Verskeie nagraadse programme word aangebied, met as basisprogramme die Meestersgraad in Siviele Ingenieurswese (M Ing (Navorsing) (Siviele Ingenieurswese) [M Ing(N)]) en die graad Doktor in die Wysbegeerte (PhD). Ander nagraadse programme is die NDI, M Ing (Gestureerde) (Siviele Ingenieurswese) [M Ing (G)] en Ding.

Die MIng (N) is ‘n navorsingsgebaseerde program, wat meestal voltydse studie en navorsing oor ‘n tydperk van 18-24 maande vereis. ‘n Navorsingstesis is die eindprodukt, maar begeleide studie word vereis ter verwerwing van die nodige agtergrond vir die navorsingsproses en die assimilasie van fundamentele kennis en insig.

Die MIng (N)-graad het ‘n totale kredietwaarde van 180 krediete, bereken volgens *SAQA-standaarde*. In die volgende spesialiseringstings binne Siviele Ingenieurswese word ‘n kursusgebaseerde meestersgraad, naamlik die MIng (S), ook ondersteun: Hawe- en Kusingeineurswese, Geotegniek, Vervoeringenierswese, Plaaslandeingeineurswese en Waterboukunde: Hidroulika en Hidrologie. Die MIng (G)-graad is 180 SAQA krediete, bestaan uit ‘n projek met ‘n minimum gewig van 33,3% van die totale krediete, aangevul deur gevorderde kursuswerk tot ‘n maksimum van 66,7% van die vereiste kredietotaal. Die MIng (G) maak voorsiening vir deelydse studie, deurdat verskeie kursesse in blokformat aangebied word wat op deelydse basis bygewoon kan word.

Die taal van aanbieding van nagraadse studie, en in besonder van kursusmodules, is in ooreenstem MIng (N) met die strategiese raamwerk van die Universiteit as ‘n taal-vriendelike instelling. Tipies word Engels en Afrikaans as medium van onderrig gebruik. Om buitelandse studente te akkommodeer word kursusmodules in Engels aangebied. Om praktiese redes is hierdie brosjure in Engels.

*SAQA = South African Qualification Authority; 1 Credit implies 10 hours of intensive focus required. An internal accreditation system is also sometimes indicated by Administrative Division of the University of Stellenbosch (US): 1 US credit = 1.5 SAQA credit

Jaarboek/Calendar: Links to all parts of the Calendar can be found on the University web site at: http://www.sun.ac.za
TABLE OF CONTENTS

1 INTRODUCTION 42
 1.1 Postgraduate Diploma in Engineering (PDE) 47
 1.2 Research based Master’s programme: M ENG (R) 49
 1.2.1 Academic framework 50
 1.2.2 Extent and Nature 53
 1.3 Course-based Master’s programme: M Eng (S) 55
 1.3.1 Academic framework 57
 1.3.2 Extent and nature 59
 1.4 Doctor of Philosophy of Engineering (PhD) and D Eng 62
 1.5 Qualifications for Admission 64
 1.6 Application for Admittance & registration Qualifications for Admission 75
 1.6.1 PDE and M Degrees 76
 1.6.2 PhD 92
 1.7 Outline of application process for admission to Post Graduate studies 99
 1.8 Important dates: Academic Calendar for 2020 104

2 RESEARCH-BASED MASTER’S DEGREE PROGRAMME (M ENG (R)) 132
 2.1 Admission and pass requirements 134
 2.2 Publication Requirements (papers) 138
 2.3 Study programme and examination 140
 2.4 Thesis 146
 2.5 Research programmes 151
 2.5.1 Civil Engineering Informatics 153
 2.5.2 Geotechnical Engineering 154
 2.5.3 Pavement Engineering 155
 2.5.4 Structural Engineering 156
 2.5.5 Transportation Engineering 159
 2.5.6 Water Engineering 160
 2.5.7 Construction Engineering and Management 164

3 COURSE-BASED MASTER’S DEGREE PROGRAMME (M ENG (S)) 168
 3.1 Admission and pass requirements 171
 3.2 Study programme 175
 3.2.1 Manner of presentation 181
 3.2.2 Examination of block course modules 183
 3.3 Fields of specialisation 185
 3.4 Scope of the project 188

4 THE POSTGRADUATE DIPLOMA IN ENGINEERING (PDE) 192
 4.1 Admission and pass requirements 194
 4.1.1 Minimum admission requirements 194
 4.1.2 Preparatory studies 199
 4.1.3 Minimum pass requirements 203
 4.2 The PDE study programme 204

5 PHD AND D ENG STUDIES 205
6 COURSE MODULES

6.1 Modules presented by the Faculty of Engineering 212
6.2 Modules presented by the Department of Civil Engineering 215
6.3 Modules presented by Mathematics and Applied Mathematics 218
6.4 Available and Prescribed course modules 220
 6.4.1 Construction Engineering and Management 222
 6.4.2 Geotechnical Engineering 228
 6.4.3 Pavement Engineering 232
 6.4.4 Structural Engineering 238
 6.4.5 Transportation Engineering 243
 6.4.6 Water Engineering 247

7 CO-OPERATION WITH OTHER UNIVERSITIES AND RESEARCH INSTITUTES 271

7.1 Bauhaus University Weimar, Germany 275
7.2 Bergische University Wuppertal, Germany 276
7.3 Technical University Berlin, Germany 277
7.4 Delft University of Technology, Netherlands 278
7.5 Technical University Darmstadt, Germany 279
7.6 Danish Hydraulic Institute, Denmark 280
7.7 CSIR Built Environment (Infrastructure Engineering) 281
7.8 Wuhan University of Technology, China 282
7.9 University of Montreal 283

8 TUITION FEES AND REGISTRATION PERIODS 287

9 RESEARCH FACILITIES 316

APPENDIX I: SCHEDULE FOR COURSE MODULES 2
APPENDIX II: COURSE MODULE SYLLABI 1

Construction Engineering and Management

PROJECT RISK MANAGEMENT (10851-812) 3
ENGINEERING AND CONSTRUCTION I [LAW] (10824-842) 4
CONSTRUCTION PROJECT MANAGEMENT (10821-812) 7
CONSTRUCTION MANAGEMENT PROGRAMME [CMP] (874 13861) 9

Geotechnical Engineering 14

APPLIED GEOMECHANICS (10814-812) 15
ADVANCED GEOTECHNICS (10809-812) 16
FOUNDATION DESIGN (10829-812) 18
SOIL BEHAVIOUR (10861-842) 19

Pavement Engineering 21

ADVANCED BITUMEN TECHNOLOGY (10785-812) 21
FLEXIBLE PAVEMENT DESIGN (10826-842) 22
PAVEMENT CONSTRUCTION (10841-842) 24
PAVEMENT EVALUATION AND REHABILITATION (11206-812) 25
PAVEMENT MANAGEMENT SYSTEMS (10844-842) 27
PAVEMENT MATERIALS I (GRANULAR & CEMENTED) (10845-812) 29
PAVEMENT MATERIALS II (ASPHALT) (10846-812) 31
Structural Engineering
- Advanced Structural Concrete Design (10810-812) 35
- Advanced Structural Steel Design (10811-812) 36
- Probability and Risk Analysis in Civil Engineering (10850-812) 40
- Structural Dynamics (10866-812) 42
- Advanced Mechanics of Materials and Modelling (AMMM) 47
- Cement-Based Materials 51

Transportation Engineering
- Geometric Road Design (10831-812) 53
- Public Transport (10853-842) 54
- Traffic Engineering (10874-812) 55
- Traffic Flow Theory (10875-812) 56
- Transport Economics (21008-812) 57
- Transportation Planning (10877-812) 58
- Transportation Safety (10878-812) 59
- Intelligent Transport Systems (13004-841) 60
- Human Factors in Traffic Collisions (11423-814) 61

Water Engineering
- Design of (Large) Hydraulic Structures (10834-812) 63
- Flood Hydrology (10827-812) 65
- Storm Water and Drainage Systems (10858-842) 68
- Special Hydraulics (10862-812) 69
- Special Hydrology (10864-842) 70
- Pipeline Hydraulics and Pumpstation Design 71
- Water and Wastewater Treatment 74
- Water Networks and Services Planning (13000-811) 76
- Water Resources Management (10879-842) 84
- Coastal Engineering Short Course [W03-0] 86
- Coastal Processes & Design, Field Data Collection & Analysis [W03-1] (65498-822) 87
- Numerical & Physical Modelling [W03-2] (65501-823) 89
- Coastal & Port Structures, Design [W03-3] (65528-854) 90
- Coasts, Ports & The Environment [W03-4] (65536-855) 92
- Port Engineering Short Course [W04-0] 94
- Port Planning & Design [W04-1] (65552-832) 95
- Port Infrastructure and Handling Equipment Short Course [W04-3] (65579-864) 97
- Dredging and Infrastructure Maintenance [W04-3] (65587-865) 99
- Numerical Simulation of Fluids TW888 101

Mathematics and Applied Mathematics
- Partial Differential Equations 20753834 4
- Numerical Simulation of Fluids TW888 - 62820 888 5
- Porous Media TW891 - 62839 891 6
<table>
<thead>
<tr>
<th>Faculty Modules</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ADVANCED TOPICS IN ENGINEERING MANAGEMENT 11748-873</td>
<td>2</td>
</tr>
<tr>
<td>NUMERICAL METHODS TW 36323 - 876</td>
<td>5</td>
</tr>
<tr>
<td>PROJECT ECONOMICS & FINANCE 58157-812</td>
<td>6</td>
</tr>
<tr>
<td>PROJECT MANAGEMENT 51993-873</td>
<td>11</td>
</tr>
<tr>
<td>DATA ANALYTICS 13856-874</td>
<td>13</td>
</tr>
<tr>
<td>ENQUIRIES</td>
<td></td>
</tr>
<tr>
<td>Position and function</td>
<td>Name</td>
</tr>
<tr>
<td>--</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Chairman: Department of Civil Engineering</td>
<td>Prof JA Wium</td>
</tr>
<tr>
<td>- General academic matters</td>
<td></td>
</tr>
<tr>
<td>Administrative Officer: Postgraduate Studies</td>
<td>Mrs AJ de Wet</td>
</tr>
<tr>
<td>- Application for admittance:</td>
<td></td>
</tr>
<tr>
<td>www.sun.ac.za/pgstudies</td>
<td></td>
</tr>
<tr>
<td>www.sun.ac.za/pgstudies</td>
<td></td>
</tr>
<tr>
<td>Faculty Secretary</td>
<td>Mrs N Hartzenburg</td>
</tr>
<tr>
<td>- Registration and fees</td>
<td></td>
</tr>
<tr>
<td>Departmental coordinator for Postgraduate studies</td>
<td>Dr IC Brink</td>
</tr>
<tr>
<td>International Office: Applications by all foreign students</td>
<td>Ms C de Doncker</td>
</tr>
<tr>
<td>http://www0.sun.ac.za/international/</td>
<td></td>
</tr>
</tbody>
</table>

FIELD OF SPECIALISATION, RESEARCH PROGRAMMES, RESEARCH FUNDS

<table>
<thead>
<tr>
<th>Division of Water Engineering, Port and Coastal Engineering</th>
<th>Prof HE Jacobs</th>
<th>+27-(0)21-808 4059</th>
<th>hej Jacobs@sun.ac.za</th>
</tr>
</thead>
<tbody>
<tr>
<td>Division of Transportation and Geotechnical Engineering</td>
<td>Prof M Sinclair</td>
<td>+27-(0)21-808 3838</td>
<td>ms Sinclair@sun.ac.za</td>
</tr>
<tr>
<td>Division of Structural Engineering and Civil Engineering Informatics</td>
<td>Prof C Viljoen</td>
<td>+27-(0)21-808 4444</td>
<td>cbarnardo@sun.ac.za</td>
</tr>
<tr>
<td>Division of Construction Engineering and Management</td>
<td>Prof JA Wium</td>
<td>+27-(0)21-808 4348</td>
<td>janw@sun.ac.za</td>
</tr>
</tbody>
</table>

ADDRESS:

Postal Address:
Department of Civil Engineering
University of Stellenbosch
Private Bag X1, Matieland,
STELLENBOSCH, 7602,
South Africa

Civil Engineering Homepage: http://www.civeng.sun.ac.za
University of Stellenbosch: http://www.sun.ac.za
Engineering Faculty: http://www.eng.sun.ac.za

Physical Address:
Department of Civil Engineering
University of Stellenbosch
Banhoek Road
7600, STELLENBOSCH,
South Africa

http://www.sun.ac.za
1 INTRODUCTION

This document offers information regarding all postgraduate programmes in Civil Engineering at the University of Stellenbosch. The background, structure, organisation, scheduling and contents of the programmes are presented with the main focus on students who wish to register in 2020 to commence postgraduate studies.

Postgraduate programmes focus primarily on Master’s Degree and Doctorate level. In addition, a Postgraduate Diploma in Engineering, intended to bridge the gap for candidates with pure science study backgrounds to engineering studies, is presented in some disciplines of Civil Engineering.

At Master’s Degree level the needs of industry are addressed by:
• The study of advanced material demanded by engineering practice;
• Developing the capacity for independent problem solving and research.

The M Eng (Research) (Civil Engineering) [M Eng (R)] program, a research based Master’s degree, addresses these needs by generally demanding full-time research and guided studies to develop fundamental problem solving capabilities.

A course based programme, namely the M Eng (Structured) (Civil Engineering) [M Eng (S)], is also presented to afford students the opportunity of studying advanced Civil Engineering curriculum material, complemented by the execution of a project. This programme is structured in a way that provides an opportunity for studying on a part-time basis. M Eng (S) is offered in the fields of Structural Engineering, Port and Coastal Engineering, Geotechnical Engineering, Transportation Engineering and Pavement Engineering.

An abbreviated specification of the respective programmes follows below.

1.1 POSTGRADUATE DIPLOMA IN ENGINEERING (PDE)

The PDE-programme offers the opportunity for candidates from pure, basic science study backgrounds to bridge the gap to engineering science, in preparation for more advanced postgraduate studies. It also presents candidates, who have received Bachelor’s Degrees in Engineering from Universities of Technology with the opportunity to follow postgraduate studies at the Civil Engineering Department of the University of Stellenbosch subject to certain conditions. The PDE is only offered in the disciplines of Port and Coastal Engineering, Geotechnical Engineering, Transport Engineering and Pavement Engineering. The programme comprises a required number of course modules, which may be a combination of undergraduate and postgraduate courses, as determined by the study leader and the divisional head of the Civil Engineering field of specialisation, as well as the student. The PDE programme is described in section 4 of this document.

1.2 RESEARCH BASED MASTER’S PROGRAMME: M ENG (R)

The aim of the research-based programme is to develop the candidate’s ability to handle independent scientific and technological investigations and to interpret the results at the Master’s Degree level.

1.2.1 Academic framework

The distinctive characteristics of the research-based programme are as follows:
• An analytical, modelling and knowledge basis is obtained by guided studies under the supervision of specialists.
• Independent investigative capability is developed through the execution of research of a suitable topic and the writing of a thesis.
• The outcome of the programme is the ability to perform an in-depth investigation in respect of an identified problem, together with the additional expertise gained in the specialised field of study.
• The benefit of this programme to the profession is in the problem solving capability that is developed.
• The programme further provides a base for PhD studies through which in-depth research capabilities and specialised knowledge are developed.

1.2.2 Extent and Nature

The research-based programme is comprised of the following:
• Full-time study of at least three semesters, resulting in a thesis, which is the final report of the research project.
• Fundamental courses may be prescribed to support knowledge development for the M Eng (R) programme. These courses must be passed but do not contribute to the total number of credits required for the degree.
• Practical relevance is ensured in that research projects are generally identified and frequently also funded by the industry.
• Research projects that can be accommodated are often part of a larger research theme, through which opportunities for financial assistance are made possible in the form of internships.

1.3 COURSE-BASED MASTER’S PROGRAMME: M Eng (S)

A structured study programme is compiled so that a Master’s Degree can be obtained through the gaining of integrated knowledge and the development of an advanced ability in application. This study option is only supported in the following specialisation fields: Structural Engineering, Geotechnical Engineering, Pavement Engineering, Port and Coastal Engineering and Transport Engineering.

1.3.1 Academic framework

The academic framework of the programme consists of:
• A structured programme, based on general Engineering courses, as well as courses in the sub-disciplines of Civil Engineering.
• Course modules with the following objectives:
 • Advanced knowledge and techniques;
 • Implementation of new methods and techniques.
• The ability to apply advanced knowledge is demonstrated by the execution of a project requiring a high level of integrated application, synthesis and innovation.

1.3.2 Extent and nature

The extent and nature of the programme is as follows:
• The programme is presented in such a manner that it can be completed on a part-time basis.
• The programme has a close association with practice in that the course content will be based on applications and because specialists from practice are often called upon to present some of the courses.
• The total credit weight of the coursework amounts to two thirds of the total M Eng (S) credit weight, and the project one third.
1.4 DOCTOR OF PHILOSOPHY OF ENGINEERING (PhD) AND D Eng

Strong national and international networks and interaction support the PhD study and research program at the Civil Engineering Department of the University of Stellenbosch which offers candidates the opportunity to become national / international specialists and leaders in the field of Civil Engineering.

Two formats of Doctor of Engineering are presented, namely the PhD and the Doctor of Engineering (DEng) degrees. The study and research for the PhD and the DEng degrees are arranged as described in section 5 of this brochure and in the University Calendar, Part 1 (Section: Higher Degrees) and Part 11 (Section 6.3 (PhD) and Section 6.4 (DEng)).

1.5 QUALIFICATIONS FOR ADMISSION

The flow diagram in Figure 1 shows the minimum requirements for admission to the respective postgraduate programmes. Candidates in possession of a recognised four-year Bachelor’s Degree in Engineering (BEng or BScEng), or a qualification accepted by the Senate to be equivalent, may apply for admission to the M Eng (S) or M Eng (R) Degree programmes. The academic merit and course programme curriculum content of candidates with BTech and BSc qualifications will be evaluated to determine their eligibility for registering for the PDE. Refer to section 4.1.2 for information on preparatory studies which may be required. More specific and additional requirements for admission to the postgraduate programmes are described in the relevant Sections (Section 2 - Section 5).

A Departmental Postgraduate Admission Committee considers applications to all postgraduate programmes to PDE and Master’s Degree level. A minimum admission requirement of 60% average over the four year period of undergraduate study, as well as for the final year of study, applies. Refer to Section 4.1.1 for students with a BTech degree.

Conditional admittance may be considered for those who do not fully qualify for admission by the Departmental Postgraduate Admission Committee. A committee with representation from outside the Department considers admittance of doctoral candidates, for recommendation to the Faculty and Senate. The academic record of the candidate and the academic relevance of the proposed topic are taken into consideration.

All candidates should be proficient in English.

General: There is limited capacity available in many post graduate disciplines and this may prevent further studies at post graduate level even though the above minimum requirements are met.
1.6 APPLICATION FOR ADMITTANCE & REGISTRATION QUALIFICATIONS FOR ADMISSION

The procedure for registration for the various postgraduate programmes is as follows:

1.6.1 PDE and M Degrees

(a) South African citizens should please complete the Initial Application Form for admission to one of
the postgraduate programmes and send it to the Secretary: Postgraduate Studies. This form is
available as a separate file on our website under Programmes/Postgraduate or from the Secretary for
Postgraduate Studies (p.1) (Foreign Students: Please refer to (f) below.)

Electronic applications at the following address: www.sun.ac.za/pgstudies

(b) The Initial Application must be submitted along with:
- A certified copy of the Degree or Diploma complying with the admission requirements;
- Certified copies of the complete study record (marks) achieved towards obtaining the
required qualification;
- A short Curriculum Vitae.
- A preliminary overview of the research interest or intended course module attendance is
also useful, but not compulsory.
To save time Initial Applications and the required documentation may be forwarded by e-mail or fax, but certified copies may be requested and candidates must be able to present the original documentation to the Department or the Administration Authorities of the University on request. (Note: Students who have achieved their undergraduate qualification/s at another institution will **definitely** be required to present original certificate/s to the Faculty Secretary (p.1) prior to registration.

An indication of the final dates for application for a particular academic year is given in Section 1.7. Generally, *Initial Applications* can still be accepted until middle January to possibly commence studies in the first semester and until the end of May to commence studies in the second semester (if applicable).

(c) The application is evaluated by the Departmental Postgraduate Admission Committee and their decision forwarded to the Dean of Engineering, University of Stellenbosch, for final acceptance.

(d) The candidate is informed of the final decision in writing by the Faculty Secretary (p.1).

(e) Upon acceptance, the candidate must register for the particular programme. This is administrated by the Faculty Secretary (Contact details: p.1) Final dates for registration for a particular academic year are given in Section 1.7.

(f) **Foreign candidates do not** use the same Initial Application Form as for South African candidates. They could make preliminary contact with a lecturer in their field of interest, but they have to **apply** for admission to any postgraduate programme offered by the Department **through the International Office**. Instructions regarding the procedure and the correct form/s to use can be found on the website of the International office along with other useful information:

- **Contact details for the International Office:**
 - International Office of the University of Stellenbosch
 - University of Stellenbosch
 - Private Bag X1 7602 Stellenbosch
 - South Africa
 - Tel: +27-(0)21-808 4628
 - Fax: +27-(0)21-808 3799
 - E-mail: interoff@adm.sun.ac.za
 - http://www0.sun.ac.za/international/

- **Important:** Students who intend to do full-time study, or visits for periods longer than 30 days at a time, must bear in mind that they may need study permits. Acquiring these may entail lengthy processes and therefore allowance must be made for delays caused by diplomatic procedures. Applications should be submitted at least 4 months before the intended starting date of full-time study, i.e. generally September for the first semester of the following year, or March for the second semester of the same year. Note that commencing studies in the second semester may not apply to all postgraduate programmes.

- Although foreign candidates submit their applications through the International Office, it is recommended that candidates also notify the Secretary Postgraduate Studies that the application has been submitted.

(g) Entries cannot be changed retroactively in subsequent years. All entries are subject to external audits as required by the Department of Higher Education and Training. Once an academic year is concluded, the study record is also concluded in this manner.

(h) It is the students’ responsibility to manage their annual registration and to keep it up to date, including modules for which they are enrolled. It is **NOT** the Postgraduate coordinator or study leader’s responsibility.

(i) If necessary, a student must request interruption of studies in the academic year and preferably no later than April of the same year. If granted, the fees for that year are credited. It may not be requested retroactively in the next academic year. ‘Interruption of studies’ form is available from Amanda de Wet.

(j) The Students may not choose in which year they will “actively” continue their studies. Once a student is enrolled, he/she must annually register his/her studies until graduation. A student can only interrupt his/her studies by **FORMALLY** applying for interruption of studies. It is normally only awarded
once for the applicable degree by the Faculty Council and Senate on the recommendation of the Department, if motivated well. There are Postgraduate students who are under the impression that they can select which year they want to continue their studies. The previous year’s tuition fees will be imposed when a student registers for studies after he/she failed to register without the necessary permission. There are other institutions that deal with this situation in a much tougher manner. Once a student does not register without permission, his/her studies are considered discontinued. Should the student wish to continue his/her studies again, he/she will have to re-apply for the degree and register again.

(k) A student following a PDE cannot be upgraded to a M Eng(Structured) programme.

(l) From 2020 all new Postgrad students will be required to attend an information session on plagiarism within their first year of study. Various such sessions are presented by the library service. Sessions are also offered to undergrad ‘skripsie’ students twice per year and may be attended by Postgrads.

Plagiarism Sessions: (available on SUNlearn)

1.6.2 PhD

(a) Consult an academic staff member who could possibly act as promoter for the PhD studies: identify thesis title, aims and scope of work, methodology and programme.

(b) Complete the enclosed application form and a University of Stellenbosch registration form (available from the Faculty Secretary, p.1) and attach the following:

- A certified copy of the Degree complying with the admission requirements.
- Certified copies of the complete study record towards obtaining this qualification.
- Proposed thesis (dissertation) title, aims, scope of work, methodology and study programme.

(c) All foreign candidates should send their applications via the International Office of the University of Stellenbosch. (Refer to Section 1.6.1.(f)) Electronic applications: www.sun.ac.za/pgstudies

(d) The application is evaluated by the Departmental Postgraduate Admission Committee.

(e) On the recommendation of this Committee, the application is evaluated by a Faculty Committee and the decision is forwarded to the Faculty Board.

(f) After acceptance by the Faculty Board, the application has to be approved by the University Senate.

(g) The candidate is notified of the outcome in writing by the Faculty Secretary.

(h) From 2020 all new Postgrad students will be required to attend an information session on plagiarism within their first year of study (it’s compulsory for all Postgraduate students). Various such sessions are presented by the library service. Sessions are also offered to undergrad skripsie students twice per year and may be attended by Postgrads. Sessions will be electronically available on line on Sunlearn. To register for the session, please contact Ms Wilna Wessels, wilnaw@sun.ac.za

Tuition Fees - Refer to Section 8

General note regarding fees: In addition to the Tuition Fees indicated under Section 8 and on the study fee statements of students, candidates may be required to pay for course notes, lunches, handbooks or other study material with regard to block courses or studies in general. With some block courses students may also have the option of partaking in lunches at an additional cost. These fees are paid directly to the secretary of the relevant division.

Note that M Eng (R) students registering for modules presented by other Departments or Universities may be required to pay additional full tuition fees for these modules.
1.7 OUTLINE OF APPLICATION PROCESS FOR ADMISSION TO POST GRADUATE STUDIES

1. On receipt of an enquiry on post graduate studies the departmental post graduate administration office refers the applicant to the web-site www.sun.ac.za/pgstudies.

2. The applicant completes and submits the on-line versions of the application forms available on the web site.

3. The departmental post graduate administration then prepares a file for the applicant containing his/her application documentation received from the central administration office which includes the study record.

4. Information for students from abroad is vetted by the International Office of the University.

5. The application file is scrutinised and information summarised for consideration by the departmental post graduate application committee.

6. The decision on acceptance or not for post graduate studies by the committee is communicated to the candidate via e-mail.

7. The applicant's documentation is then forwarded to the central administration where the engineering faculty secretary prepares and dispatches a formal application letter to the candidate.

8. The departmental post graduate administration office then contacts the student and supplies information on the registration process and study fees as well as the first contact information meeting which the student needs to attend. As part of the registration process, the student enters into a contract with the department. The standard contract is contained in the information supplied to the student.

9. The student completes the registration process on the University Web-site and/or at the central administration office.

10. For module registration see Appendix I (at the back of the Brochure).

1.8 IMPORTANT DATES: ACADEMIC CALENDAR FOR 2020

All dates below provide a provisional guideline subject to finalisation by the University.

30 November 2019

Closing date for the ‘Initial Application’ to Department for admission to postgraduate studies starting in 2020 (except Foreign Students: Section 1.6.1f). Students are encouraged to apply earlier since later applications may be rejected due to capacity constraints.

3 February 2020

Start of the Academic Year, specifically for undergraduate students, but also of some semester based postgraduate courses. Postgraduate students (especially those on course based programmes, e.g. M Eng (S)) should contact their study leaders as soon as admission has been approved (alternatively by the 2nd week in January) regarding their study programme for the year and the lecture times for the applicable semester courses. Some block courses are presented as early as January (see Appendix I). Course schedule available in Postgraduate Brochure (Appendix I) on Civil Engineering’s website: www.civeng.sun.ac.za

10 February 2020

Agenda closes for Faculty Meeting

14 February 2020

Closing date to register for programme (anchor module) and submodules - MEng (Structured) & PDE.

15 January 2020

Last date for applications extension of study period.
19 February 2020
Faculty Committee Meeting

20 February 2020
Final date for Department to load final marks for candidates graduating in March/April 2020.

26 February 2020
Final date for candidates graduating in March to load your Master’s Degree theses or Doctoral Dissertations electronically on the US System.

28 February 2020
Faculty Board Meeting

29 February 2020
Engineering Open Day

1 March 2020
Electronic applications open for the 2021 intake: Please apply at www.sun.ac.za/pgstudies

11 March 2020 (Date will be confirmed)
Postgraduate Function - Civil Engineering.

30 March 2020
Final date for registration of new postgraduate candidates starting in the first semester, 2020. Closing date to register for programme (anchor module) and submodules - MEng (Research) & PhD.

March/April 2020 (Date will be confirmed)
Graduation Ceremony for Civil Engineering (Master and PhD Degrees17:00, Coetzenburg)

28 April 2020
Agenda closes for Faculty Meeting

30 April 2019
Last date for applications for “annual study leave” [Interruption of studies]

6 May 2019
Faculty Committee Meeting

15 May 2019
Faculty Board Meeting

13 July 2019
Agenda closes for Faculty Meeting. (Appointment of Examiner forms for December Graduation).

24 July 2019

Faculty Committee Meeting

31 July 2019

Last day to add or cancel sub modules for the year (PDE and MEng Structured students).

Faculty Board Meeting

5 August 2020

PhD: Final version of dissertation ready for submission to examiners, to be handed to Promotor - Dec Graduation.

1 June - 6 September 2020

MEng: Final version of thesis ready for submission to examiners, to be handed to Supervisor - Dec Graduation.

7 September - 15 October 2020

MEng: Final version of thesis ready for submission to examiners, to be handed to Supervisor - March Graduation.

12 October 2020

Agenda closes for Faculty Meeting
PhD’s students documents must be send to Faculty Secretary for graduation in December 2021.

21 October 2020

Faculty Committee Meeting

30 October 2020

Faculty Board Meeting

31 October 2020

PhD: Final version of dissertation ready for submission to examiners, to be handed to Promotor - March 2021 Graduation
Closing date: Electronic applications for foreign candidates.

24 November 2020

Final date for Department to load final marks for candidates graduating in December 2020.

25 November 2020

Final date for candidates graduating in December 2020 to load your Master’s Degree theses or Doctoral Dissertations electronically on the US System.

30 November 2020

Closing date for the ‘Initial Application’ to Department for admission to postgraduate studies starting in 2021 (except Foreign Students: Section 1.6.1f).
7-11 December 2020 (Date to be confirmed)

Graduation Ceremony. (Coetzenburg, 10h00)

15 January 2021

Last date for applications extension of study period.
2 RESEARCH-BASED MASTER’S DEGREE PROGRAMME (M Eng (R))

The research-based Master’s Degree programme extends over a minimum period of 18 months. The outcome of this programme is a civil engineering specialist with a fundamental in-depth training that is based on problem solving and advanced application within a field of specialisation. This programme will prepare candidates also for PhD research, and should therefore be followed by candidates who consider an advanced level of postgraduate qualification.

2.1 ADMISSION AND PASS REQUIREMENTS

A candidate with a Bachelor’s degree in Natural Science and a Honours degree from Stellenbosch University may be admitted to the MEng(R) programme. An average pass mark of 60% or above is required for the BSc and Hons qualifications. If the Hons degree is from any other South African university, an average pass mark of 65% or above is required for the Hons degree. The MEng(S) programme may include two undergraduate modules in engineering which will imply full-time study of at least one semester. In water engineering if candidates do not have an engineering degree, only a BSc Hons degree in Hydrology may be considered for admission.

A candidate with a four year BEng or a BSc(Eng) or equivalent may be admitted to the MEng(R) program. An average pass mark of 60% or above is required for the BEng or BSc(Eng) qualification for students who did not study as Stellenbosch University. For Stellenbosch University students the requirement is 60 % or above, but applications of 55% or above may be accepted in exceptional cases.

Candidates that completed a BTech degree with an average pass mark of 70% or more may be admitted to the MEng(R) program after additional studies. Accepted additional studies are a BEng(Hons) degree from the University of Pretoria, with an average mark of 65% or more, or a Postgraduate Diploma in Engineering (PDE) from Stellenbosch University with an average mark of 60% or more. Four preparatory undergraduate Mathematics and Science modules have to be completed as well.

Depending on the study leader and field of study, the student may be required to successfully complete non-credit bearing course modules in preparation of the research. However, the thesis comprises 100% of the final mark. Two independent examiners, typically one internal examiner and one external examiner, approved by the Faculty, evaluate the thesis and a mark of at least 50% is required for the degree to be awarded.

2.2 PUBLICATION REQUIREMENTS (PAPERS)

Publication of M Eng (R) research results

Journal Articles are to be supplied as specified in the Faculty of Engineering Calendar, paragraph 6.2.5.2 for MEng (Res) students. Calendar available: www.sun.ac.za

From 2019, all work that will find its way to publication or SUNscholar must include copyright permission from the original author to use images, graphs, etc., that have come from a third party even if figures etc. have been redrawn. It is the responsibility of the student to get such permission. If it is impossible to get permission, the student must be able to proof that sufficient effort has been used to get permission and track record of the efforts must be kept.

2.3 STUDY PROGRAMME AND EXAMINATION

The academic weight of the M Eng (R) programme comprises 180 SAQA credits.

The Degree is awarded based on the thesis submitted by the candidate. A programme for managed self-study and research is determined by the study leader, in co-operation with the Divisional Head. The weight of the thesis is 100% of the total credits of the degree programme.
In addition to the thesis the candidate may be required to successfully complete certain course modules indicated by the study leader in preparation of the thesis. For successful completion of each module the candidate must obtain a pass mark based on the marks received for tests, assignments and an examination. No credits are received for passing the modules. As there is no formal examination time table for the Postgraduate modules, examination dates will be set by the respective academic staff members. Modules will be listed on student’s records from 2020.

MEng (Research) students should make at least one public presentation of their research work including the findings. This presentation can be in the form of a conference contribution, or it can be in front of a publicly announced colloquium at the Engineering Faculty. The presentation can be before or after the submission date. If it is presented some time before the final submission date, it should at least address the major findings. In such a case it allows the public (fellow students/lecturers/others) to comment on the work, which can be beneficial for the student when he/she completes the final write-up of the thesis. If the presentation is made via a colloquium at the Engineering Faculty, the colloquium must be organised by the student in consultation with his/her supervisor(s) and the head of the relevant division. The postgraduate officer may be approached for assistance regarding the booking of a venue and the distribution of the invitation/announcement.

When there is a difference in the allocated mark between the two examiners, so that a decision is needed between a pass/fail or a distinction/or not, the student should normally make a presentation to the examination commission.

The MEng (R) programme generally requires full time study on the Stellenbosch Campus of the University. Part time study options will however be considered under special conditions and with prior arrangement with the potential study leader.

2.4 THESIS

The thesis is the product of study and research completed by the student under the supervision of the study leader. The thesis mark comprises 100% of the final mark. This is proportional to the weight in credits of the research project. The study leader(s) approve(s) the final thesis, but an independent internal examiner and at least one independent external examiner evaluate the thesis.

Through the thesis the candidate should demonstrate the ability to conduct an independent scientific and technical investigation and to interpret the results correctly.

The research for the thesis must lead to a paper and presentation at an international conference, or a paper in an acknowledged journal.

The fact that the thesis presents the candidate’s own work and that it has not been presented at any other university must be declared by the candidate in the actual thesis.

Instructions regarding the format of the thesis are stated in the Calendar of the University of Stellenbosch, Part 1 (General), ‘Rules for Higher Degrees’. This document is generally also available on the University website (p.1).

Provisions as to the format, final submission, duplication and binding of Master’s theses available in the Calendar of the University.
2.5 RESEARCH PROGRAMMES

Research programmes reflect the areas of specialisation and interest within the Department. Topics for Masters theses which fall within the research programmes and themes of the Department will ensure that the necessary study leadership will be available. Funds are often available for such thesis projects. Candidates may also enquire about assistantships or internships available in selected programmes, or for selected projects.

2.5.1 Civil Engineering Informatics

- A research programme covering various aspects of the application of Informatics in Civil Engineering is executed in parallel with the presentation of undergraduate and postgraduate courses on the subject. Some of the projects are listed under the field of application, such as structural engineering and Construction Engineering and Management.
- Computational management, including modelling of the engineering process.

2.5.2 Geotechnical Engineering

- Research in the geotechnical field concentrates on the fundamental properties of soils, dispersivity and electro-osmosis.

2.5.3 Pavement Engineering

- In Pavement Engineering the emphasis is on all aspects of flexible and rigid pavements with special reference to accelerated testing. The South African National Roads Agency (SANRAL), Industry and the Institute for Geotechnics Management and Transportation (GMT) support these projects.

2.5.4 Structural Engineering

- Life cycle optimisation and risk informed decision making
- Structural health monitoring
- Application of structural reliability to the development of design criteria for structures.
- Reliability modelling and calibration of structural design codes of practice.
- Innovative applications of structural steel.
- Computational simulation and prediction of damage to concrete and masonry structures.
- Development of advanced cement-based materials and new products.
- Seismic behaviour of structures.
- Hybrid Concrete Construction.
- Liquid containing structures.
- Improvement of construction and structural design aspects for reduced environmental impact
- 3D printing of concrete structures
- Fire Structural Engineering
- Bridge Engineering
- Early age properties of concrete

2.5.5 Transportation Engineering

Research projects in Transportation Engineering are sponsored by the Department of Transport and include the following:

- Road safety.
- Intelligent Transport Systems
- Traffic Engineering.
- Transportation Planning and Logistics.
2.5.6 Water Engineering

Diverse sponsored projects in Hydraulics and Hydrology include:

- Hydraulic structures.
- Storm water and River Hydraulics.
- Environmental studies.
- Sediment transport and Reservoir Sedimentation.
- Water resources planning.
- Water quality management and modelling.
- Eco-Hydraulics.
- Surface hydrology.
- Flood hydrology.
- Water Services.
- Water Demand Management.
- Water treatment.
- Water Networks analysis.
- Sewer Systems analysis.
- In Port and Coastal Engineering (part of Water Engineering Division) the emphasis is on Coastal Processes and Port Development. Transnet National Ports Authority of South Africa (TNPA) sponsors a chair in this field since 2006.

2.5.7 Construction Engineering and Management

The Chair in Construction Engineering and Management only accepts full time students for the MEng(R) degree. Under special conditions and agreement students with excellent undergraduate marks may be accepted for part time registration. The MEng(S) qualification is still only offered to current students. MEng(R) students are required to complete 5 modules in preparation of their research, 3 of which are taken in Construction Engineering and Management, and the remainder from other disciplines.

The Chair in Construction and Engineering Management addresses management in all areas of infrastructure development, being management by clients, consultants and contractors. Research is aimed at the following topics, and research topics are defined in collaboration with the study leader:

- Modular construction
- Risk management
- Infrastructure management
- Design management
- Large infrastructure projects
- Sustainability of infrastructure
- The use of modern technology in construction
3 COURSE-BASED MASTER’S DEGREE PROGRAMME (M Eng (S))

A course based Master’s degree study programme requires a combination of course modules and a project. The nature of presentation provides practising civil engineers the opportunity for advanced study without having to take prolonged study leave. This can be achieved by means of structured studies, which culminate in the M Eng (S) Degree. This degree is offered in the following fields of specialisation:

- Structural Engineering
- Geotechnical Engineering
- Pavement Engineering
- Port and Coastal Engineering
- Transportation Engineering

A set of course modules is compiled to provide a coherent curriculum of advanced studies in a field of specialisation. The course modules are formulated to be of an applied nature, whilst developing a high level of conceptual thinking. The project should demonstrate the ability of the candidate to solve problems in the chosen field of specialisation by synthesis and/or the application of one or more of the concepts in an innovative and practical manner.

3.1 ADMISSION AND PASS REQUIREMENTS

A candidate with a Bachelor’s degree in Natural Science and an Honours degree from Stellenbosch University may be admitted to the MEng(S) programme. An average pass mark of 60% or above is required for the BSc and Hons qualifications. If the Hons degree is from any other South African university, an average pass mark of 65% or above is required for the Hons degree. The MEng(S) programme may include two undergraduate modules in engineering which will imply full-time study of at least one semester. In water engineering if candidates do not have an engineering degree, only a BSc Hons degree in Hydrology may be considered for admission.

A candidate with a four year BEng or a BSc(Eng) or equivalent may be admitted to the MEng(S) program. An average pass mark of 60% or above for the BEng or BSc(Eng) qualification is required. For Stellenbosch University students, applications of 55% of higher may be accepted in exceptional cases.

A candidate with a Bachelor’s degree from a South African University of Technology and a Honours (B. Eng. Hons) degree from the University of Pretoria may be admitted to the MEng(S) programme (in same field as Hons), subject to an average mark for the Honours qualification of at least 65%.

A final mark of at least 50% must be achieved in each of the course modules, as well as the project. The final mark for the M Eng (S) Programme is the weighted average of course marks and the mark for the final project, averaged by weight in credits. Any student who is admitted to the program with marks below the minimum requirements due to special circumstances, will be required to pass at least 2 modules in the first year of study.

3.2 STUDY PROGRAMME

The programme for the M Eng (S) Degree requires the successful completion of course modules and a project. The project contributes to the final mark relative to its credit weight. The academic weight of the programme comprises 1800 hours (180 SAQA credits) of high level effective study, of which at most 66.7% (120 SAQA credits) is devoted to course modules and the remaining minimum of 33.3% (60 SAQA credits) to the project.

The majority of course modules are presented in block format facilitating part-time studies towards the M Eng (S) Degree. A maximum study period of 4 years is allowed. It is possible to accelerate the part-time programme by spending more time on attending courses. Partial full-time study or the parallel completion
of the project can reduce the total duration of the programme. However, a candidate must be registered for the M Eng (S) programme for at least one full year in order to be awarded the degree.

Course modules are generally presented in a three-year cycle. Some modules will be presented in a one or two-year cycle in order to provide some flexibility. In the Water Engineering Division, courses will be presented only on an ad hoc basis to satisfy the demand from industry, in other words not for credit purposes. (Courses in Port and Coastal Engineering may be an exception here.)

Individual modules are developed in such a way that pre-requisites are limited to the minimum. It is therefore possible to enter the programme at any time. In a few cases consecutive modules will be presented within one year.

Applicants must indicate a preferred field of specialisation. Before commencing with the coursework, a study leader will be appointed by the Departmental Chairman, in co-operation with the Head of the Division within which the candidate’s preferred field of focus lies. At the start of the study programme, the candidate and the study leader will make an appropriate selection of course modules, to be approved by the Divisional Head.

In order to facilitate planning in advance, the provisional schedule for course modules over the next three years is provided. Final dates (and possible changes that may occur) are published on the Civil Engineering website (p.1). (Follow the link to ‘Forthcoming M Eng (R) Courses.)

3.2.1 Manner of presentation
The presentation of the part-time course modules typically consists of three components:
• A course module is introduced by means of an intensive block week or weeks.
• A period of self-study follows each block. Presented material is studied and assignments are completed.
• An examination is set by the academic staff member.

3.2.2 Examination of block course modules
Admittance to the examination of a module is based on acceptable completion of assignments, which generally means a mark of at least 50% must be obtained. The date for the examination is set by the academic staff member.

The grades for the assignments and the mark for the examination are combined as determined by the academic staff member, resulting in the final mark for the module.

3.3 FIELDS OF SPECIALISATION
The course-based Master’s Degree programme is presented in the following fields of specialisation:

<table>
<thead>
<tr>
<th>FIELD</th>
<th>CONTACT PERSON</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structural Engineering</td>
<td>Prof Celeste Viljoen: Tel: +27-(0)21-8084444; cbarnardo@sun.ac.za</td>
</tr>
<tr>
<td>Geotechnical Engineering</td>
<td>Dr Charles MacRobert: Tel: +27-(0)21-8084079; macrobert@sun.ac.za</td>
</tr>
<tr>
<td>Pavement Engineering</td>
<td>Prof Kim Jenkins: Tel: +27-(0)21-8084379; kjenkins@sun.ac.za</td>
</tr>
<tr>
<td>Water Engineering: Port and Coastal Engineering</td>
<td>Prof Koos Schoonees: kooss@sun.ac.za</td>
</tr>
<tr>
<td>Transportation Engineering</td>
<td>Prof Marion Sinclair: Tel: +27-(0)21-8083838; msinclair@sun.ac.za</td>
</tr>
</tbody>
</table>
3.4 SCOPE OF THE PROJECT

The project for the course-based Masters degree carries a credit weight as indicated in section 3.2 above. The project should demonstrate advanced and in-depth application and synthesis of the material concerning one or more of the topics covered in the course modules. Innovative application or novel integration of various fields will be highly rated. Projects should generally be of such a nature that it would qualify as a paper to a conference, or an equivalent form of publication. The study leader(s) approve(s) the final Project report, and serves as Internal examiner. Furthermore, either an independent Internal examiner or External examiner also gives a mark. External moderation of the Project report is also carried out.

Instructions regarding the project format are given in the Calendar of the University of Stellenbosch, Part 1 (General) in the section concerning Higher Degrees. This document is also available on the University website (p.1).
4 THE POSTGRADUATE DIPLOMA IN ENGINEERING (PDE)

A postgraduate diploma programme is presented, which leads to the qualification Postgraduate Diploma in Engineering (PDE). This program is offered in the fields of Port and Coastal Engineering, Transport Engineering, Pavement Engineering and Geotechnical Engineering in the Civil Engineering Department of the University of Stellenbosch.

The academic merit and course programme curriculum content of candidates with BTech and BSc qualifications will be evaluated to determine their eligibility for registering for the PDE. Refer to section 4.1.2 for information on preparatory studies which may be required.

4.1 ADMISSION AND PASS REQUIREMENTS

4.1.1 Minimum admission requirements
A candidate may be admitted to the PDE programme if he/she:

- has a Bachelor’s degree from a South African University of Technology with an average mark for the qualification of at least 70%.
- is in possession of an acknowledged Bachelor’s degree in Natural Science from a South African University, with an average mark for the qualification of at least 60%. An average mark of 55% or above may be accepted in special cases. NB: BSc candidates cannot register with SACNASP as Pr.Sci.Nat because the PDE programme does not get Honours level recognition. Candidates are advised to do the BSc(Hons) in Geology and then apply for the MEng Programme.
- has any other non-engineering academic degree and experience which is considered to be acceptable by the Departmental Admission Committee.

Candidates may be required to do preparatory/supplementary studies in which an average pass mark of at least 60%, as described in 4.1.2, has to be achieved. The decision on required preparatory studies is made with reference to the academic record of the candidate. Any candidate who is admitted to the program with marks below the minimum requirements, or due to special circumstances, will be required to pass at least two PDE modules in the first year of study in order to be allowed to continue. The PDE program may include two undergraduate engineering modules, which will imply full-time study for at least one semester.

4.1.2 Preparatory studies
The Department reserves the right to require of a candidate to perform preparatory/supplementary studies before being admitted to the PDE-programme. The following preparatory/supplementary courses are applicable:

- Engineering Mathematics 214, Applied Mathematics B242 and B252, and Statistics for Scientists 314, as described in the yearbook of the Faculty of Engineering, University of Stellenbosch; or
- One course each in Mathematics, Mechanics and Statistical Methods, respectively equivalent to the above mentioned courses at the discretion of the Department, presented by an acknowledged South African University. In this regard, the following course modules offered by UNISA will be accepted:
 - Mat 1503 (Linear Algebra)
 - APM 1612 (Applied Mathematics: Mechanics 2)
 - APM 2611 (Applied Mathematics)
 - Introduction to Statistics STA1610
The candidate will require a letter of motivation from the Department of Civil Engineering, University of Stellenbosch to UNISA to be allowed to enrol the above as course modules for non-degree purposes.

- Applicants must achieve a mark of at least 60% in the preparatory studies.

Candidates may apply for exemption for these subjects on the basis of equivalent prior learning.

4.1.3 Minimum pass requirements

The pass mark for the programme is 50%. The final mark is the weighted average of course marks.

4.2 THE PDE STUDY PROGRAMME

The PDE-programme comprises a minimum of 120 SAQA credits in the form of coursework. The programme can be followed on a part-time basis, or full-time, depending on the composition of courses. A study leader is appointed by the Department. The study leader, in co-operation with the divisional head of the field of expertise, as well as the student, sets up a study programme, which can be a combination of postgraduate and undergraduate course modules of the Department. A student must pass a minimum of 2 modules in first year to register for the following year.

5 PhD and D Eng STUDIES

Applications to the PhD programme will be considered based on academic history and experience. A Master’s degree is required for PhD admission, except under special circumstances when MEng enrolment is upgraded to PhD enrolment.

Programmes of study and research for the PhD and the DEng Degree are arranged as described in the University Calendar, Part 1 (Section: Higher Degrees) and Part 11 (Section 6.3 (PhD) and Section 6.4 (DEng)). Applications for admission should include full particulars of the candidate’s academic record, together with a proposal for the research topic. A committee with representation from outside the Department considers admittance of doctoral candidates, for recommendation to the Faculty and Senate. The academic record of the candidate and the academic relevance of the proposed topic will be taken into consideration.

Provisions as to the format final submission, duplication and binding of the doctoral dissertations available on the Civil Engineering's website: www.civeng.sun.ac.za

Publication of PhD research results

Journal Articles are to be supplied as specified in the Faculty of Engineering Calendar, paragraph 6.3.3 for PhD students. Calendar available: www.sun.ac.za

From 2019, all work that will find its way to publication or SUNscholar must include copyright permission from the original author to use images, graphs, etc., that have come from a third party even if figures etc. have been redrawn. It is the responsibility of the student to get such permission. If it is impossible to get permission, the student must be able to proof that sufficient effort has been used to get permission and track record of the efforts must be kept.
6 COURSE MODULES

6.1 MODULES PRESENTED BY THE FACULTY OF ENGINEERING

The Faculty of Engineering has identified five modules that cover aspects considered to be common to all branches of Engineering. Students following Structured programmes have to include a minimum of three of these modules in their curricula*. The modules are listed below and content descriptions are provided in Appendix IV. These modules will be presented each year and dates will be made available on the website of the Faculty.

*Other rules may apply to students enrolled for Port & Coastal and Pavement Engineering.

<table>
<thead>
<tr>
<th>Module title</th>
<th>Code</th>
<th>Host department</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numerical methods</td>
<td>TW 776/876</td>
<td>Applied mathematics</td>
<td>15</td>
</tr>
<tr>
<td>Advanced topics in Engineering</td>
<td>11478 - 773/873</td>
<td>Industrial Engineering</td>
<td>15</td>
</tr>
<tr>
<td>Management</td>
<td>11478 - 773/873</td>
<td>Industrial Engineering</td>
<td>15</td>
</tr>
<tr>
<td>Project finance</td>
<td>58157 - 712/812</td>
<td>Civil Engineering</td>
<td>15</td>
</tr>
<tr>
<td>Project management</td>
<td>51993 - 773/873</td>
<td>Industrial Engineering</td>
<td>15</td>
</tr>
<tr>
<td>Principles of Data Science</td>
<td>13856-874</td>
<td>Industrial Engineering</td>
<td>15</td>
</tr>
</tbody>
</table>

6.2 MODULES PRESENTED BY THE DEPARTMENT OF CIVIL ENGINEERING

The course modules to be presented by Department of Civil Engineering over the next three years are listed in the table of Appendix I in alphabetical order of fields of specialisation in the first place and secondly according to the course module title. Dates of presentation are indicated in the table to the extent that they were available at the time of this edition of the Brochure. Dates of presentation are regularly updated in the edition of the Brochure available on the Civil Engineering website (p.1) - follow the links through ‘Programmes’ and ‘Continued education’. Please take note of the ‘Date of this revision’ indicated on the title page of the Brochure for reference.

In addition, the course modules are also listed on the website Postgraduate Schedule of Course Modules. Generally, links are provided on the Civil Engineering Homepage (p.1), and also from the main page for ‘Continued Education’.

6.3 MODULES PRESENTED BY MATHEMATICS AND APPLIED MATHEMATICS

The following course modules in Mathematics and Applied Mathematics are presented on behalf of the Department of Civil Engineering. Content descriptions are supplied in Appendix III. (Dates are subject to change)

<table>
<thead>
<tr>
<th>Department</th>
<th>Course module title</th>
<th>Previous Code</th>
<th>SAQA Credits</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematics</td>
<td>Linear Algebra 38571814</td>
<td>IW01</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Applied Mathematic (Dr Mf Maritz)</td>
<td>Partial Differential Equations 20753834</td>
<td>TW03</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Applied Mathematics (Prof GJF Smit)</td>
<td>Numerical Simulation of Fluids 62820-775 (will be presented in 2020)</td>
<td>-</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Applied Mathematics (Dr GPJ Diedericks)</td>
<td>Porous media 62839-791</td>
<td>-</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>
6.4 AVAILABLE AND PRESCRIBED COURSE MODULES

In this section the course modules available for either the achievement of course credits, or for guided self-study, are summarised per field of research. The indication of SAQA credits would be relevant for PDE and M Eng (S) candidates and only in certain instances for M Eng (R) candidates. It may be required of M Eng (R) candidates to complete modules as preparation for the thesis, i.e. not for credits. Postgraduate candidates should also note that it is possible to complete certain relevant modules for credits at other institutions (especially those with an official study agreement with this Department, e.g. UCT - Refer to Section 7). Such modules must be pre-approved for credits by the study leader.

6.4.1 Construction Engineering and Management

The objective of the Chair in Construction and Construction Engineering and Management is to promote management practices for the successful implementation of major capital projects.

Courses are presented through collaboration between:

Department of Civil Engineering

Students are expected to complete 3 modules from the courses in Construction Engineering and Management and 2 modules from other disciplines in engineering as preparation for their research. Studies in this field may also typically compliment another field of specialisation. For more information on the courses/modules please visit the departmental website.

The Construction Management Programme (CMP) is offered annually/bi-annually and is an extremely intensive and high level management course of 4 weeks. A substantial course fee applies, also to registered postgraduate students. Admittance for Degree purposes is based on special selection.

CMP course details can be found at: http://www.cmp.sun.ac.za

The following courses are available and relevant for the field of construction Engineering and Management.

<table>
<thead>
<tr>
<th>Course module</th>
<th>Home department</th>
<th>SAQA Credits</th>
<th>Sem.</th>
<th>Compulsory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering & Construction I (Law)</td>
<td>Civ. Eng.</td>
<td>15</td>
<td>2020 (1)</td>
<td></td>
</tr>
<tr>
<td>Construction Project Management</td>
<td>Civ. Eng.</td>
<td>15</td>
<td>2020 (2)</td>
<td></td>
</tr>
<tr>
<td>Project Risk Management</td>
<td>Civ. Eng.</td>
<td>15</td>
<td>2020 (1)</td>
<td></td>
</tr>
</tbody>
</table>

MEng (Research) students: A minimum of five modules will be required, the details of which to be determined by the specialist lecturers. Other modules than those listed above can be found from other disciplines in agreement with the Study Leader and Divisional Head.
6.4.2 Geotechnical Engineering

The table below lists courses that are available and relevant for the field of geotechnical engineering.

<table>
<thead>
<tr>
<th>No</th>
<th>Course Module</th>
<th>Previous Code</th>
<th>SAQA Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Foundation engineering 811</td>
<td>G01</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>Soil behaviour 841</td>
<td>G02</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>Applied Geomechanics 811</td>
<td>G03</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>Pavement materials I 811</td>
<td>P01</td>
<td>15</td>
</tr>
<tr>
<td>5</td>
<td>Environmental analysis and decision-making 711 (Host Dept.: Geography)</td>
<td>To be confirmed</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Advanced Geotechnics 811</td>
<td>G04</td>
<td>15</td>
</tr>
<tr>
<td>7</td>
<td>Probability and risk analysis 811</td>
<td>MT02</td>
<td>15</td>
</tr>
</tbody>
</table>

* Highly recommended (but not compulsory) for M Eng (R).

MEng (Research) students: A minimum of three modules will be required, the details of which to be determined by the specialist lecturers.

MEng (Structured) students: A minimum of three common faculty modules, listed in section 6.1, are compulsory.

6.4.3 Pavement Engineering

In order to attain the required number of course modules, the prescribed and/or recommended combinations tabulated below may be supplemented with modules in any other field of specialisation, subject to the approval of the study leader.

<table>
<thead>
<tr>
<th>No</th>
<th>Course Module</th>
<th>Previous Code</th>
<th>SAQA Credits</th>
<th>M Eng (R) Compulsory</th>
<th>M Eng (S) Compulsory</th>
<th>Recommended</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pavement Materials I 811 (Granular & Cemented)</td>
<td>P01</td>
<td>15</td>
<td>**</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>2</td>
<td>Flexible Pavement Design 841</td>
<td>P02</td>
<td>15</td>
<td></td>
<td></td>
<td>**</td>
</tr>
<tr>
<td>3</td>
<td>Pavement Construction 841</td>
<td>P03</td>
<td>15</td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>4</td>
<td>Pavement Materials II 811 (Asphalt)</td>
<td>P04</td>
<td>15</td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>5</td>
<td>Pavement Management Systems 841</td>
<td>P05</td>
<td>15</td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>6</td>
<td>Pavement Evaluation & Rehabilitation 811</td>
<td>P06</td>
<td>15</td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>7</td>
<td>Rigid Pavement Design 811</td>
<td>P07</td>
<td>15</td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>8</td>
<td>Advanced Bitumen Technology 811</td>
<td>P08</td>
<td>15</td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>9</td>
<td>Pavement Materials III 811 (Bitumen Stabilised Materials BSM-foam/emulsion)</td>
<td>P09</td>
<td>15</td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>10</td>
<td>Probability and risk analysis in civil engineering 811</td>
<td>MT02</td>
<td>15</td>
<td></td>
<td>Yes</td>
<td>*</td>
</tr>
<tr>
<td>11</td>
<td>Continuum mechanics and finite element methods 841</td>
<td>MT04</td>
<td>15</td>
<td></td>
<td></td>
<td>* Recom.</td>
</tr>
<tr>
<td>12</td>
<td>Advanced Geotechnics 811</td>
<td>G04</td>
<td>15</td>
<td></td>
<td></td>
<td>* Recom.</td>
</tr>
</tbody>
</table>

* Completion of Items (11) and/or (12) (subject to annual availability) is highly recommended, but not compulsory.

The balance of the 3 course modules required for M Eng (R) must be selected from Items (1) to (10) in agreement with the specialist lecturers. ** For M Eng (S) at least 5 course modules must be selected from Items (1) to (10) with supplementation by course modules chosen from the common faculty modules and any of the other fields, subject to the approval of the study leader.
6.4.4 Structural Engineering

The courses tabulated below are available and relevant for the field of Structural engineering.

<table>
<thead>
<tr>
<th>Course Module</th>
<th>Previous Code</th>
<th>SAQA Credits</th>
<th>MEng(S)</th>
<th>MEng(R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Mechanics of Materials and Modelling</td>
<td>AMMM</td>
<td>15</td>
<td>Elective</td>
<td>Elective</td>
</tr>
<tr>
<td>Seismic design of building structures</td>
<td>SBS</td>
<td>15</td>
<td>Elective</td>
<td>Elective</td>
</tr>
<tr>
<td>Cement-based materials</td>
<td>CBM</td>
<td>15</td>
<td>Elective</td>
<td>Elective</td>
</tr>
<tr>
<td>Structural Fire Engineering</td>
<td>SFE</td>
<td>15</td>
<td>Elective</td>
<td>Elective</td>
</tr>
<tr>
<td>Probability and risk analysis in civil engineering</td>
<td>MT02</td>
<td>15</td>
<td>Elective</td>
<td>Elective</td>
</tr>
<tr>
<td>Continuums mechanics and finite element methods</td>
<td>MT04</td>
<td>15</td>
<td>Elective</td>
<td>Elective</td>
</tr>
<tr>
<td>Structural dynamics 841</td>
<td>MT11</td>
<td>15</td>
<td>Compulsory</td>
<td>Compulsory</td>
</tr>
<tr>
<td>Advanced structural steel design 811</td>
<td>MT12</td>
<td>15</td>
<td>Compulsory</td>
<td>Compulsory</td>
</tr>
<tr>
<td>Advanced structural concrete design 811</td>
<td>MT13</td>
<td>15</td>
<td>Compulsory</td>
<td>Compulsory</td>
</tr>
</tbody>
</table>

Students studying toward a MEng(R) in Structural Engineering are required to attend at least five modules, of which three modules are compulsory, while two may be chosen from the other available postgraduate courses in Civil Engineering, to be agreed on by Study Leader and Divisional Head. Courses may also be selected from other South African Universities, in agreement with the Study Leader and Post Graduate Coordinator. Note that the research generally runs in parallel with coursework. The final mark for the MEng (R) at the Department of Civil Engineering is based on a 100% weight for the thesis.

Students studying towards an MEng (S) in Structural Engineering are required to pass at least eight modules, of which three modules are compulsory as indicated above. The remaining five modules have to include three of the common faculty modules, listed in section 6.1, while the remaining two may be chosen from the available postgraduate courses in Structural Engineering.

6.4.5 Transportation Engineering

<table>
<thead>
<tr>
<th>No</th>
<th>Course Module</th>
<th>Previous Code</th>
<th>SAQA Credits</th>
<th>M Eng (R)</th>
<th>M Eng (S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Probability and risk analysis 811</td>
<td>MT02</td>
<td>15</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Geometric road design 811</td>
<td>T01</td>
<td>15</td>
<td>-</td>
<td>Yes</td>
</tr>
<tr>
<td>3</td>
<td>Public transport 841</td>
<td>T02</td>
<td>15</td>
<td>-</td>
<td>Yes</td>
</tr>
<tr>
<td>4</td>
<td>Traffic engineering 841</td>
<td>T03</td>
<td>15</td>
<td>-</td>
<td>Yes</td>
</tr>
<tr>
<td>5</td>
<td>Transportation safety 811</td>
<td>T04</td>
<td>15</td>
<td>-</td>
<td>Yes</td>
</tr>
<tr>
<td>6</td>
<td>Traffic flow theory 811</td>
<td>T05</td>
<td>15</td>
<td>-</td>
<td>Yes</td>
</tr>
<tr>
<td>7</td>
<td>Transportation planning 811</td>
<td>T06</td>
<td>15</td>
<td>-</td>
<td>Yes</td>
</tr>
<tr>
<td>8</td>
<td>Transport economics 811</td>
<td>T07</td>
<td>15</td>
<td>-</td>
<td>Yes</td>
</tr>
<tr>
<td>9</td>
<td>Intelligent Transport Systems 811</td>
<td>T08</td>
<td>15</td>
<td>-</td>
<td>Yes</td>
</tr>
<tr>
<td>10</td>
<td>Human Factors in Traffic Collisions</td>
<td>T09</td>
<td>15</td>
<td>-</td>
<td>Yes</td>
</tr>
</tbody>
</table>

* The balance of course modules required for M Eng (S) in Transportation Engineering may be selected from any field, subject to the approval of the study leader.

Students (MEng Structured) specialising in Transportation Engineering are required to follow at least five courses, of which four courses are compulsory and a fifth may be chosen from the other available postgraduate courses in Civil Engineering. At least three of the common faculty modules, listed in section 6.1, have to be followed as well.

MEng (Research) students: A minimum of three modules will be required, the details of which to be determined by the specialist lecturers.
6.4.6 Water Engineering

Water Engineering Modules (excl. Port and Coastal Eng) are listed below for study in the fields of:

- River hydraulics and Design of hydraulic structures (Prof Basson)
- Bulk water pipeline hydraulics & pumpstation design (Prof Basson)
- Hydrology (Prof du Plessis)
- Water Services (water distribution and sewer networks) (Prof Jacobs and Mr Loubser)
- Water quality and treatment (Dr Brink)
- Stormwater and drainage systems (Ms. Bosman)

The study leader will approve the 3 compulsory modules for M Eng (R) studies. For students who registered during 2020 for the first time a total of 3 modules are required, while students who registered during 2013 or earlier for the first time require 4 modules. (Note: The PDE, and MEng Structured are not offered in Water Engineering since 2012 (except for TNPA Port and Coastal Engineering students)). Only the MEng Research programme is offered to students who enrolled after 2012. Students are required to enrol full time. Only in exceptional cases will part time MEng Research studies be allowed based on SA Citizenship, study record and research environment).

<table>
<thead>
<tr>
<th>No</th>
<th>Course Module</th>
<th>SAQA credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Design of Hydraulic Structures</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>Flood Hydrology</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>Water Resources Analysis & Management</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>Pipeline Hydraulics and Pump station design</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>Water Networks and Services Planning</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>Water and Wastewater treatment</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>Numerical simulation of fluids(^{(1)})</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>Special Hydrology</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>Special Hydraulics</td>
<td>-</td>
</tr>
</tbody>
</table>

Notes: (1) Numerical simulation of Fluids is a first semester course by the Applied Mathematics Department
(2) Port and Coastal Engineering MEng (R)/MEng (S) has specific modules; the short courses are listed below.

Modules and short courses for Port & Coastal Engineering (Prof Schoonees and Dr Theron) are listed in Table 6.3.7.2. The chair for this course programme is supported by Transnet National Ports Authority of South Africa (TNPA).

One of the aims of this programme is the advancement of teaching and research on post graduate level to graduates as well as professionals in practice (in both public and private sectors) in the fields of Coastal and Port Engineering.

A formal course programme of modules and short courses is followed, as described in Appendix II. Three short courses of one-week length are presented, namely: Port Engineering (W04-0), Coastal Engineering (W03-0) and Port Infrastructure and Cargo Handling (W04-3). The first two short courses (W03-0 and W04-0) are presented in alternate years, usually during August of each year. Authorities, consultants, contractors and other universities are invited to these short courses (W03-0 and W04-0). In contrast to these two short courses, the “Port infrastructure and Cargo Handling Short Course” (W04-3) is only available to M. Eng. students (not for people from the industry). Block courses are presented in detail in six modules from 2020 over two-year periods.

Lectures are presented by US academics, assisted by invited overseas experts as well as local experts from the public and private sectors. The CSIR has a cooperative agreement with SU to assist with both lecturing of research topics as well as the making available of laboratory facilities for post graduate research projects (and undergraduate laboratory projects).

In the programme strong emphasis is placed on integration of environmental issues, global warming impacts (sea-level rise, storm changes), and the use of state-of-the-art tools (computational numerical modelling) to address coastal and port design problems.
Relevant local coastal and port site visits are incorporated in the course as well as a Port Design Task. The table below presents a brief summary of course content. The course schedule for the next three years is presented below and in Appendix I under Port & Coastal Engineering. The fees for the different study levels are presented in Section 8 below.

Table 6.3.7.2: Modules and short courses for Port and Coastal Engineering

<table>
<thead>
<tr>
<th>No</th>
<th>Course Module</th>
<th>Code</th>
<th>SAQA Credits</th>
<th>M Eng. (Research)</th>
<th>M Eng. (Course Based)</th>
<th>PDE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Coastal Engineering Short Course 841</td>
<td>W03-0</td>
<td>-</td>
<td>see footnote</td>
<td>see footnote</td>
<td>see footnote</td>
</tr>
<tr>
<td>2</td>
<td>Coastal Processes, field data collection & analysis</td>
<td>W03-1</td>
<td>15</td>
<td>Compulsory</td>
<td>Compulsory</td>
<td>Compulsory</td>
</tr>
<tr>
<td>3</td>
<td>Numerical & Physical modelling</td>
<td>W03-2</td>
<td>15</td>
<td>Compulsory</td>
<td>Compulsory</td>
<td>Compulsory</td>
</tr>
<tr>
<td>4</td>
<td>Coastal & Port Structures, Design</td>
<td>W03-3</td>
<td>15</td>
<td>Compulsory</td>
<td>Compulsory</td>
<td>Compulsory</td>
</tr>
<tr>
<td>5</td>
<td>Coasts & Ports and the Environment</td>
<td>W03-4</td>
<td>15</td>
<td>Compulsory</td>
<td>Compulsory</td>
<td>Compulsory</td>
</tr>
<tr>
<td>*6</td>
<td>Port Engineering Short Course 811</td>
<td>W04-0</td>
<td>-</td>
<td>see footnote</td>
<td>see footnote</td>
<td>see footnote</td>
</tr>
<tr>
<td>7</td>
<td>Port Planning and Design</td>
<td>W04-1</td>
<td>15</td>
<td>Compulsory</td>
<td>Compulsory</td>
<td>Compulsory</td>
</tr>
<tr>
<td>*8</td>
<td>Port Infrastructure and cargo handling equipment (Short Course)</td>
<td>W04-3</td>
<td>-</td>
<td>Elective</td>
<td>Compulsory</td>
<td>Compulsory</td>
</tr>
<tr>
<td>9</td>
<td>Dredging & Infrastructure Maintenance</td>
<td>W04-4</td>
<td>15</td>
<td>Elective</td>
<td>Compulsory</td>
<td>Compulsory</td>
</tr>
<tr>
<td>10</td>
<td>Port Economics: Port Authority</td>
<td>U S Dept. Logistics (Econ. Faculty)</td>
<td>15</td>
<td>Elective</td>
<td>Not required</td>
<td>Not required</td>
</tr>
<tr>
<td>11</td>
<td>Port Economics: Terminal Operations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Foundation Design 811</td>
<td>G01</td>
<td>15</td>
<td>Elective</td>
<td>Not required</td>
<td>Not required</td>
</tr>
<tr>
<td>13</td>
<td>Numerical simulation of fluids</td>
<td>TW888</td>
<td>15</td>
<td>Elective</td>
<td>Not required</td>
<td>Not required</td>
</tr>
<tr>
<td>*14</td>
<td>Thesis for M Eng (R) (Research)</td>
<td>-</td>
<td>180</td>
<td>Compulsory</td>
<td>Not required</td>
<td>Not required</td>
</tr>
<tr>
<td>*15</td>
<td>Project for M Eng (S) (Course Based)</td>
<td>-</td>
<td>60</td>
<td>Not required</td>
<td>Compulsory</td>
<td>Not required</td>
</tr>
</tbody>
</table>

Notes:
(*1) and (*6) are compulsory to attend for all students registered in the Port & Coastal Engineering Programme. Industry Engineers can obtain CPD points by attending these short courses.
(*8) is compulsory for M. Eng. (Structured) students to attend and pass.
(*14) The thesis mark will determine the student’s final mark and passing of all five compulsory courses is a precondition to obtain the degree.
(*15) The Project mark counts together with the module marks towards the overall pass mark of the M Eng. (S) (Course Based).

From 2020 and in later years, the requirements for M. Eng. (Structured) students are as follows:
- Successfully complete the six port and coastal engineering modules, namely, W03-1, W03-2, W03-3, W03-4, W04-1 and W04-4 (refer to Table 6.3.7.2).
- Attend and pass “W04-3 Port Infrastructure and cargo handling equipment (Short Course)”.
- Attend the short courses W03-0 and W04-0 (refer to Table 6.3.7.2).
- Successfully complete two of the three faculty modules listed in Table 6.3.7.3.
- Submit and pass the project report (refer to Table 6.3.7.2).
Table 6.3.7.3: Faculty modules applicable to Port and Coastal Engineering

<table>
<thead>
<tr>
<th>Module title</th>
<th>Code</th>
<th>Host department</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced topics in Engineering</td>
<td>11478 - 773/873</td>
<td>Industrial Engineering</td>
<td>15</td>
</tr>
<tr>
<td>Management</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project finance</td>
<td>58157 - 712/812</td>
<td>Civil Engineering</td>
<td>15</td>
</tr>
<tr>
<td>Principles of Data Science</td>
<td>13856-874</td>
<td>Industrial Engineering</td>
<td>15</td>
</tr>
</tbody>
</table>

Note that 2020 will be a transition year in order to address the needs of the students that have started M. Eng. (Structured) in 2019. To allow for these students and for new students, the modules listed in Table 6.3.7.4 must be taken. For students that have started before 2019, the situation will be evaluated on a case by case basis.

Table 6.3.7.4: Module and short course schedule up to 2024

<table>
<thead>
<tr>
<th>Item</th>
<th>2020</th>
<th>2021</th>
<th>2022</th>
<th>2023</th>
<th>2024</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modules and Short Course</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W03-0</td>
<td>W04-0</td>
<td></td>
<td>W03-0</td>
<td></td>
<td>W04-0</td>
</tr>
<tr>
<td>W03-1</td>
<td>W03-4</td>
<td></td>
<td>W03-1</td>
<td></td>
<td>W03-4</td>
</tr>
<tr>
<td>W03-2</td>
<td>W04-4</td>
<td></td>
<td>W03-2</td>
<td></td>
<td>W04-4</td>
</tr>
<tr>
<td>W03-3</td>
<td>(Any 2 of the 3 faculty modules in Table 6.3.7.3)</td>
<td></td>
<td>W03-3</td>
<td></td>
<td>(Any 2 of the 3 faculty modules in Table 6.3.7.3)</td>
</tr>
<tr>
<td>W04-1</td>
<td></td>
<td></td>
<td>W04-1</td>
<td></td>
<td>W04-1</td>
</tr>
<tr>
<td>W04-3</td>
<td></td>
<td></td>
<td>W04-3</td>
<td></td>
<td>W04-3</td>
</tr>
<tr>
<td>*Project finance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Refer to Table 6.3.7.2 for the names of the port and coastal modules.

*Project finance in 2020 is only required for students that have started M. Eng. (Structured) in 2019.
7 CO-OPERATION WITH OTHER UNIVERSITIES AND RESEARCH INSTITUTES

Co-operation with other universities both locally and abroad, provides opportunities to postgraduate students to attend courses at these universities without having to pay additional tuition fees. Modules attended in this manner are then considered part of the curriculum of the University of Stellenbosch.

Full particulars of courses that are available may be obtained from the heads of the Departments of Civil Engineering at the respective universities.

Note, however, that at least half the total number of course module credits and the entire thesis or study project credits required for a Diploma or Degree should be obtained at the residential university.

Students wishing to make use of this possibility should apply in writing to the Registrar (Attention: The Secretary, Faculty of Engineering), indicating which courses they wish to attend at other universities. Students must receive written confirmation before embarking on the proposed courses.

7.1 BAUHAUS UNIVERSITY WEIMAR, GERMANY
An agreement exists with the Bauhaus University Weimar (BUW), Germany. Provision is made for staff and student exchange. Students from the University of Stellenbosch, who study at BUW, are exempt from tuition and entrance fees.

7.2 BERGISCHE UNIVERSITY WUPPERTAL, GERMANY
An agreement exists with the Bergische University Wuppertal, Germany. Provision is made for staff and student exchange. Registered students from the University of Stellenbosch, who study at this institution, are exempt from tuition and entrance fees.

7.3 TECHNICAL UNIVERSITY BERLIN, GERMANY
An agreement with the Technical University Berlin was concluded to enhance research in the field of Civil Engineering Informatics at postgraduate level, and specifically at doctoral level. Joint research projects are underway in this field.

7.4 DELFT UNIVERSITY OF TECHNOLOGY, NETHERLANDS
An agreement of understanding exists with the Delft University of Technology (TUD). Provision is made for staff and student exchange. Students from the University of Stellenbosch, who study at TUD, are exempt from tuition and entrance fees for some programmes of study. TUD Lecturers actively participate in the Block Courses in Stellenbosch.

7.5 TECHNICAL UNIVERSITY DARMSTADT, GERMANY
An agreement exists with the Technical University Darmstadt, Germany. Provision is made for staff and student exchange. Registered students from the University of Stellenbosch, who study at this institution, are exempt from tuition and entrance fees.

7.6 DANISH HYDRAULIC INSTITUTE, DENMARK
Joint projects are underway to enhance post-graduate research in the field of mathematical modelling of river hydraulics, often with study visits to Denmark. DHI have recently provided their full software suite to the University of Stellenbosch for academic and training use, free of charge.

7.7 CSIR BUILT ENVIRONMENT (INFRASTRUCTURE ENGINEERING)
Close co-operation exists between the CSIR in the fields of Coastal Engineering and Port infrastructure (CSIR Stellenbosch branch) as well as in the field of pavement engineering (CSIR Pretoria branch).
7.8 WUHAN UNIVERSITY OF TECHNOLOGY, CHINA
An agreement exists with the Wuhan University of Technology, China in the field of Pavement Engineering. Provision is made for staff and student exchange. Registered students from the University of Stellenbosch, who study at this institution, are exempt from tuition and entrance fees and vice versa for WHUT.

7.9 UNIVERSITY OF MONTREAL
Definition and realisation of coordinated teaching and research programs in the following fields:
- Hydraulics, closed conduits
- Sewer system modelling
- Water distribution system analysis and modelling

Exchange of professors, researchers, experts and advisors for limited periods to:
- a) Participate in the development of scientific, technical and academic projects or provide their advice on such projects.
- b) Assist in training of teaching personnel and organize training courses or workshops to this effect.

Exchange of documentation, organization of conferences or other activities related to the dissemination of scientific and technical information (publications, etc.).

Exchange of graduate students who are enrolled on a full-time basis at their home institution, to participate in academic and/or research activities which will be accredited by the host institution in order to fulfil part of the requirements to acquire a graduate degree at their home institution. In this case, students will have to conform to the conditions and requirements stipulated by the host institution.
8 TUITION FEES AND REGISTRATION PERIODS

The tuition model below indicates the policy of the Faculty of Engineering concerning maximum periods of enrolment that would be allowed for the respective postgraduate programmes in terms of the total amount of study years allowed since the first year of registration for the programme. This policy was approved in 2004 and has been effective since January 2005. Please note that:

- In the event that a candidate should exceed the allowed study period, the candidate will not automatically be allowed to simply renew registration, but will require the approval of the Faculty Committee to continue with studies. The candidate will need to apply for such renewal through the Faculty Secretary (p.1).
- The maximum registration periods for each respective programme, as indicated below, have effect on ALL postgraduate students.

The model below also indicates the fee structure for postgraduate programmes in all departments of the Faculty of Engineering, as approved by the Administrative Division for Student Fees (September 2008) with effect from January 2019.

Postgraduate students must be registered at the University before they register for the individual modules or else pay the full price of module.

Although care has been taken to present the actual fees accurately, candidates should please note that the University reserves the right to amend the fees indicated below without prior notice and that all fees should best be confirmed with Administrative Division for Student Fees (Tel: (021) 8084519 or the Faculty Secretary for Engineering (p.1) close to the time of registration.)

Important:
These fees may not apply to students who do not have South African citizenship.
All Foreign Students should please consult the International Office of the University of Stellenbosch regarding fees. (Refer to Section 1.6)

Also: The Tuition Fees indicated here and on study fees statements to candidates will not include possible additional fees for course notes or hand books required for block courses (or other preparative work). These fees are generally paid directly to the secretaries in the Division hosting the relevant course. Note that M Eng (R) students registering for modules presented by other Departments / Universities may be required to additionally pay full tuition fees for these modules.

Tuition Fees - Refer to Section 8

General note regarding fees: In addition to the Tuition fees indicated under Section 8 and on the study fees statements of students, candidates may be required to pay for course notes, handbooks or other study material with regard to block courses or studies in general. With some block courses students may also have the option of partaking in lunches at an additional cost. These fees are paid directly to the secretary of the relevant division.

Legend:

<table>
<thead>
<tr>
<th>Normal registration period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final year granted (concessionary year) for admission to programme</td>
</tr>
<tr>
<td>Registration only possible after successful re-application</td>
</tr>
<tr>
<td>No further registration normally permissable</td>
</tr>
</tbody>
</table>

PLEASE NOTE THAT THE FOLLOWING FEES ARE APPLICABLE TO THE MODULES PRESENTED BY THE ENGINEERING FACULTY ONLY

PDE [120 SAQA credits]
Student must complete 8 modules successfully to obtain the Postgraduate Diploma in Engineering.

<table>
<thead>
<tr>
<th>Year of registration</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full-time study</td>
<td>R 27 008</td>
<td>R 27 008</td>
<td>R 27 008</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLUS cost per credit</td>
<td>R 310/credit</td>
<td>R 310/credit</td>
<td>R 310/credit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Part-time study</td>
<td>R 27 008</td>
<td>R 27 008</td>
<td>R 27 008</td>
<td>R 29 709</td>
<td>R 32 679</td>
<td>R 35 947</td>
</tr>
<tr>
<td>PLUS cost per credit</td>
<td>R 310/credit</td>
<td>R 310/credit</td>
<td>R 310/credit</td>
<td>R 310/credit</td>
<td>R 310/credit</td>
<td>R 310/credit</td>
</tr>
</tbody>
</table>

- Part time option discussed possibility with Study Leader.

<table>
<thead>
<tr>
<th>Postgraduate Diploma in Civil Engineering (120 credits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fees & Expenses for 2019</td>
</tr>
<tr>
<td>Description</td>
</tr>
<tr>
<td>Tuition fee per year</td>
</tr>
<tr>
<td>8 x modules</td>
</tr>
<tr>
<td>Estimate for Course fees payable to the Division presenting the relevant course*</td>
</tr>
</tbody>
</table>
M Eng (S) [180 SAQA credits]
Student must complete 8 modules (120 credits) successfully and then project (60 credits) to obtain M Eng (S) degree.

<table>
<thead>
<tr>
<th>Year of registration</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full-time study</td>
<td>R 27 008</td>
<td>R 27 008</td>
<td>R 29 709</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLUS cost per credit</td>
<td>R 310/credit</td>
<td>R 310/credit</td>
<td>R 310/credit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Part time study</td>
<td>R 27 008</td>
<td>R 27 008</td>
<td>R 27 008</td>
<td>R 29 709</td>
<td>R 32 679</td>
<td>R 35 947</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLUS cost per credit</td>
<td>R 310/credit</td>
<td>R 310/credit</td>
<td>R 310/credit</td>
<td>R 310/credit</td>
<td>R 310/credit</td>
<td>R 310/credit</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

M.Eng [Structured] Programme in Civil Engineering (180 credits)

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuition fee per year</td>
<td>27 008.00</td>
<td>*See brochure section 8 (fee differs from 4th year of registration)</td>
</tr>
<tr>
<td>8 x modules</td>
<td>37 200.00</td>
<td>1 module = 15 credits x R310 / per credit = R4 650 / sub module</td>
</tr>
<tr>
<td>Project</td>
<td>18 600.00</td>
<td>Project = 60 credits x R310 / credit = R 18 600</td>
</tr>
<tr>
<td>Estimate for Course fees payable to the Division presenting the relevant course *</td>
<td>12 400.00</td>
<td>*Estimate of R1 550 per course (8 courses x R1 550)</td>
</tr>
</tbody>
</table>

Take note: **Registration fees payable every year with registration.**
Additional fee differs between divisions - it can be more or less
M Eng (R) [180 SAQA credits]
Thesis will count 100% - A total of 3-5 modules (can differ between Divisions) will be required.

<table>
<thead>
<tr>
<th>Year of registration</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full-time study</td>
<td>R 27 008</td>
<td>R 27 008</td>
<td>R 29 709</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Part time study</td>
<td>R 27 008</td>
<td>R 14 554</td>
<td>R 14 554</td>
<td>R 16 009</td>
<td>R 27 008</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

M.Eng [Research] Programme in Civil Engineering (180 credits)

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuition fee per year</td>
<td>27 008.00</td>
<td>*</td>
</tr>
<tr>
<td>Estimate for Course fees payable to the Division presenting the relevant course</td>
<td>7 400.00</td>
<td>Estimate of R1 550 per course (5 courses x R1 550)</td>
</tr>
</tbody>
</table>

* Tuition Fees payable every year with registration.

Course fee differs between divisions - it can be more or less

PhD/DENG

<table>
<thead>
<tr>
<th>Year of registration</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full-time study</td>
<td>R 24 701</td>
<td>R 24 701</td>
<td>R 24 701</td>
<td>R 27 170</td>
<td>R 29 887</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Part time study</td>
<td>R 24 701</td>
<td>R 13 400</td>
<td>R 13 400</td>
<td>R 14 739</td>
<td>R 16 214</td>
<td>R 17 834</td>
<td>R 24 701</td>
<td></td>
</tr>
</tbody>
</table>

Part-time PhD studies are not encouraged.

Amount due is calculated for SAQA credits (as indicated in Appendix I). The Division for Student Fees may indicate fees according to an internal (US) credit system.

15 SAQA credits/course module (Appendix I) = 10 US credits/course module

SPECIAL STUDENTS (Register only for individual modules)

<table>
<thead>
<tr>
<th>Study Fees (per module credit)</th>
<th>R 310 / credit (R4 650/module [15 credits])</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operational cost per module</td>
<td>As determined by Division (fees payable to the Division)</td>
</tr>
</tbody>
</table>

INTERRUPTIONS OF STUDIES

The Faculty of Engineering’s policy on interruption of Postgraduate studies only allows 1 year for the MEng and 2 years for the PhD programme.

Application for interruption must be submitted on the prescribed form, with supportive documents, before 31 March of the academic year.

Only the situation at work, medical reasons, financial reasons and highly personal circumstances, are considered as value reasons for approval of interruption of studies.
9 RESEARCH FACILITIES

Postgraduate study is closely linked to research. The Department of Civil Engineering has very extensive laboratory facilities, which have been planned and designed to serve both as a high-level undergraduate laboratory and as experimental laboratories for postgraduate research work. Some of these facilities are described below.

Geotechnical-, Pavement- and Transportation Engineering

The Geotechnical laboratory is well equipped for both research and specialist services to industry. The Pavement Engineering section has a selection of the latest materials testing and performance analysis equipment. The Bitumen Stabilised Materials' equipment includes:

- Rachig Emulsion Mill,
- WLB10S Laboratory Foam Eng (R) Plant and
- Twin-shaft Pugmill Mixer.

The bitumen and granular/cemented/asphalt material testing equipment includes:

- Shear-plate Rheometer, Dynamic Shear Theometer, Rotational Viscometer
- Gyratory Compactor,
- MTS Servo-hydraulic system for ITS, SCB, UCS, ITT and triaxial testing
- UTM-25 pneumatic testing system for materials testing
- IPC Four Point Beam Fatigue and Flexural Modulus Testing Apparatus and Monotonic Beam Tester

A model mobile load simulator (MMLS), developed in the laboratory by Prof Fred Hugo of the Institute for Geotechnics, Management and Transportation (GMT), is also available for accelerated pavement testing.

Transportation research is supported by an information system covering half a million references.

Structural Engineering and Informatics

Facilities are available for the experimental and numerical examination of structures. Software at our disposal includes Abaqus, Strand7, Diana, Prokon, Matlab and Comrel/Strurel.

Well-equipped materials and structural laboratories provide, amongst other items, the following components and equipment:

- A vast range of concrete mixing equipment
- Climate rooms
- Steam curing facilities
- Vibration tables
- Drying ovens
- State of the art three dimensional optical strain measurement system (ARAMIS)
- Compression testing machine: 2 MN
- Advanced Universal Testing Machine (250 kN)
- 2 x 50 kN and 2 x 500 kN Servo controlled hydraulic actuators
- Full scale mechano type test frames
- Various load cells and LVDTs and advanced measurement systems

Extensive computer facilities support structural analysis and information technology for civil engineers.
Water Engineering

The Division of Water Engineering has an enclosed hydraulics laboratory facility which comprises of mainly the following (including both Water Engineering and Port & Coastal Engineering facilities):

- A space of 3000 m² which could be used for hydraulic experiments including three dimensional model studies. The space is serviced by overhead moving measuring bridges and a gantry crane.
- Four narrow glass wall flumes (two flumes of 1.5 m deep by 0.6 m wide by 22 m long and two flumes of 1.2 m deep by 1.0 m wide by 40 m long) in which flow experiments can be performed. One of the 1.0 m wide flumes is also equipped with a wave generator. (A maximum wave height of 200 mm can be generated.)
- One wide tilting glass wall flume (0.6 m deep by 2.0 m wide by 12 m long) for flow experiments.
- One large wave/current flume of 2 m wide by 2 m deep by 50 m long (30 m over which flow can be induced) with overhead gantry crane. (A maximum wave height of 500 mm can be generated.)
- Six supply pumps (total capacity of approximately 700 ℓ/s) with pipe and channel reticulation system and three constant head tanks.
- One 6 m wide wave generator for experiments in a wave basin with 0.3 m water depth.
- Measurement instrumentation (including flow and water level recorders).

Mathematical modelling is carried out as part of research using state-of-the-art models such as: Mike 11, HECRAS 1D/2D, Mike 21C, ANSYS Fluent, Mike 3, Delft3D etc.
APPENDIX I: Schedule for Course Modules

Postgraduate course modules offered by the Department of Civil Engineering, University of Stellenbosch

- The table below indicates when modules are scheduled to be presented over the 3 year period from January 2020 through December 2022. **Provisional dates** are indicated where available. These are updated regularly in the electronic version of this Brochure on the Civil Engineering website (p.1), under Programmes/Postgraduate and must be confirmed with the short course division: civilcourses@sun.ac.za

- In the table below course modules are listed alphabetically, firstly according to field and secondly to course module title. Notes regarding the content of course modules are provided in Appendix II in the same order. (Please note that a list of ‘Forthcoming M Eng (R) Block Courses’ arranged according to date, is also available on the website.)

- **Compulsory and recommended combinations for the respective fields of specialisation are indicated in Section 6 of the Brochure.**

- **MEng candidates will be registered on an 8 level code and PDE students will be registered on a 7 level code.**

- Unless indicated otherwise (refer to numbered footnotes) all the courses below are presented on the Campus of Stellenbosch University at the Faculty of Engineering.

- Enquiries and registration regarding the courses below can generally be made by e-mail to the reference provided with each field or by default to the Secretary of every division indicated in the Table below.

- Full time students must complete four semesters of Mentorships or Assistantships during the period of Postgraduate Studies.

- **Candidates may be required to pay for course notes, lunches, handbooks or other study material with regard to block courses or studies in general. These fees are paid directly to the Secretary of the relevant division and do not form part of your Tuition Fees.**
Enquiries: Ms Janine Myburgh and Ms Tsholo Seroalo
E-mail: civilcourses@sun.ac.za (Short course registration).
Submodule registration: Ms Natalie Scheepers: civilacademic@sun.ac.za

<table>
<thead>
<tr>
<th>Course Module Title and Number</th>
<th>Code</th>
<th>SAQA Credits</th>
<th>Format</th>
<th>2020</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>ENGINEERING FACULTY: MODULES AND BLOCK SCHEDULE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data Analytics</td>
<td>13856-874</td>
<td>15</td>
<td>Block</td>
<td>10-15 Feb</td>
</tr>
<tr>
<td>Advanced Topics in Engineering Management</td>
<td>11748-873</td>
<td>15</td>
<td>Block</td>
<td>24-29 Feb</td>
</tr>
<tr>
<td>Numerical Methods</td>
<td>36323-876</td>
<td>15</td>
<td>Block</td>
<td>2-3 March</td>
</tr>
<tr>
<td>Project Management</td>
<td>51993-873</td>
<td>15</td>
<td>Block</td>
<td>1-6 June</td>
</tr>
<tr>
<td>Project Economics and Finance</td>
<td>58157-812</td>
<td>15</td>
<td>Block</td>
<td></td>
</tr>
<tr>
<td>Above courses form part of the block courses of the MEng (Structured Programme)</td>
<td>15</td>
<td>Block</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEng (Structured) students must choose 3 Faculty modules (which form part of the 8 modules)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This schedule was last updated on 13/12/2019
<table>
<thead>
<tr>
<th>Course Module Title and Number</th>
<th>Previous Code</th>
<th>SAQA Credits</th>
<th>Format</th>
<th>Availability per Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction Management Programme (874 13861)</td>
<td></td>
<td></td>
<td></td>
<td>14 Jun – 10 Jul</td>
</tr>
<tr>
<td>Construction Project Management (10821-812)</td>
<td>15</td>
<td>Block</td>
<td></td>
<td>19-21 Aug 29-30 Oct</td>
</tr>
<tr>
<td>Engineering and Construction I (Law) (10824-842)</td>
<td>15</td>
<td>Block</td>
<td></td>
<td>19-20 March 11-13 May</td>
</tr>
<tr>
<td>Project Risk Management (10851-812)</td>
<td>15</td>
<td>Block</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infrastructure Management (13002-811)*</td>
<td>15</td>
<td>Block</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infrastructure Procurement (13003-811)*</td>
<td>15</td>
<td>Block</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project Economics and Finance (58157-812)</td>
<td>15</td>
<td>Block</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leadership and Environment (13686-874)*</td>
<td>15</td>
<td>Block</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project Management (Engineering Management (51373-812))*</td>
<td>15</td>
<td>Block</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 The CMP is an extremely intensive high level management course of 4 weeks, offered annually. A substantial course fee applies also to registered postgraduate students. Admittance for Degree purposes subject to special selection criteria.

* Modules currently not offered at present
<table>
<thead>
<tr>
<th>Course Module Title and Number</th>
<th>Previous Code</th>
<th>SAQA Credits</th>
<th>Format</th>
<th>2020</th>
<th>2021</th>
<th>2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geotechnical Engineering</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Applied Geo mechanics (10814-812)</td>
<td>G03</td>
<td>15</td>
<td>Block</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Advanced Geotechnics (10809-812)</td>
<td>G04</td>
<td>15</td>
<td>Block</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Foundation Design (10829-812)</td>
<td>G01</td>
<td>15</td>
<td>Block</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Soil Behaviour (10861-842)</td>
<td>G02</td>
<td>15</td>
<td>Block</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Pavement Engineering</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced Bitumen Technology (10785-812)</td>
<td>P08</td>
<td>15</td>
<td>Block</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Flexible Pavement Design (10826-842)</td>
<td>P02</td>
<td>15</td>
<td>Block</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Pavement Construction (10841-842)</td>
<td>P03</td>
<td>15</td>
<td>Block</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Pavement Evaluation & Rehabilitation (11206-812)</td>
<td>P06</td>
<td>15</td>
<td>Block</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pavement Management Systems (10844-842)</td>
<td>P05</td>
<td>15</td>
<td>Block</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pavement Materials I (Granular & Cemented) [10845-812]</td>
<td>P01</td>
<td>15</td>
<td>Block</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pavement Materials II (Asphalt) [10846-812]</td>
<td>P04</td>
<td>15</td>
<td>Block</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pavement Materials III (BSM-foam/emulsion) [10848-842]</td>
<td>P09</td>
<td>15</td>
<td>Block</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rigid Pavement Design (10857-812)</td>
<td>P07</td>
<td>15</td>
<td>Block</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structural Engineering</td>
<td>MT</td>
<td>15</td>
<td>Block</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td>----</td>
<td>---------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Probability and Risk Analysis in Civil Engineering (10850-812)</td>
<td>MT02</td>
<td>15</td>
<td>Block</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuum mechanics and finite element methods (10822-842)</td>
<td>MT04</td>
<td>15</td>
<td>Block</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structural Dynamics (10866-812)</td>
<td>MT11</td>
<td>15</td>
<td>Block</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced Structural Steel Design (10811-812)</td>
<td>MT12</td>
<td>15</td>
<td>Block</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced Structural Concrete Design (10810-812)</td>
<td>MT13</td>
<td>15</td>
<td>Block</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structural Fire Engineering</td>
<td></td>
<td>15</td>
<td>Block & Online</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fire Behaviour</td>
<td></td>
<td>15</td>
<td>Block & Online</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seismic Design of building structures (11652-813)</td>
<td>MT14</td>
<td>15</td>
<td>Block</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced Mechanics of Materials and Modelling</td>
<td>MT05</td>
<td>15</td>
<td>Semester</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cement-based Materials</td>
<td></td>
<td>15</td>
<td>Semester</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course Module Title and Number</td>
<td>Previous Code</td>
<td>SAQA Credits</td>
<td>Format</td>
<td>Availability per Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---------------</td>
<td>--------------</td>
<td>--------</td>
<td>--------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transportation Engineering</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geometric Road Design (10831-812)</td>
<td>T01</td>
<td>15</td>
<td>Block</td>
<td>2020 1 2021 2 2022 1 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Public Transport (10853-842)</td>
<td>T02</td>
<td>15</td>
<td>Block</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Traffic Engineering (10874-812)</td>
<td>T03</td>
<td>15</td>
<td>Block</td>
<td>2020 1 2021 2 2022 1 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Traffic Flow Theory (10875-812)</td>
<td>T05</td>
<td>15</td>
<td>Block</td>
<td>25-30 May</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transport Economics (21008-812)</td>
<td>T07</td>
<td>15</td>
<td>Block</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transportation Planning (10877-812)</td>
<td>T06</td>
<td>15</td>
<td>Block</td>
<td>8-12 June</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transportation Safety (10878-812)</td>
<td>T04</td>
<td>15</td>
<td>Block</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intelligent Transport Systems (13004-841)</td>
<td>T08</td>
<td>15</td>
<td>Block</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human Factors in Traffic Collisions (11423-814)</td>
<td></td>
<td>15</td>
<td>Block</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water Engineering</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydraulic Structures (10834-812)</td>
<td>W01</td>
<td>-</td>
<td>Block*</td>
<td>2020 1 2021 2 2022 1 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storm Water and Drainage systems (10858-842)</td>
<td>W02</td>
<td>-</td>
<td>Block</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flood Hydrology (10827-812)</td>
<td>W05</td>
<td>-</td>
<td>Block*</td>
<td>2020 1 2021 2 2022 1 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water Resources Management (10879-842)</td>
<td>W06</td>
<td>-</td>
<td>Block*</td>
<td>2020 1 2021 2 2022 1 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pipeline Hydraulics & Pump station design</td>
<td>W07</td>
<td>-</td>
<td>Block*</td>
<td>2020 1 2021 2 2022 1 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water Networks and Services Planning (13000-811)</td>
<td>W09</td>
<td>-</td>
<td>Block*</td>
<td>2020 1 2021 2 2022 1 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water and Wastewater Treatment</td>
<td>W08</td>
<td>-</td>
<td>Block</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Special Hydraulics (10862-812)</td>
<td>-</td>
<td>-</td>
<td>Block*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Special Hydrology (10864-842)</td>
<td>-</td>
<td>-</td>
<td>Block*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Port Engineering short course</td>
<td>W04</td>
<td>-</td>
<td>Block</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coastal Engineering short course</td>
<td>W03</td>
<td>-</td>
<td>Block</td>
<td>17-21 Aug</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Numerical simulation of fluids</td>
<td></td>
<td>15</td>
<td>Semester</td>
<td>2020 1 2021 2 2022 1 2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix I: Schedule for Course Modules

<table>
<thead>
<tr>
<th>YEAR</th>
<th>2020</th>
<th>2021</th>
<th>2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNPA PORT & COASTAL ENGINEERING POSTGRADUATE PROGRAMME</td>
<td>Quarter</td>
<td>Quarter</td>
<td>Quarter</td>
</tr>
<tr>
<td>Module</td>
<td>Code</td>
<td>SQA Credit</td>
<td>Type</td>
</tr>
<tr>
<td>Coastal Processes & Field Data Collection (65498-822)</td>
<td>C</td>
<td>W03-1</td>
<td>15</td>
</tr>
<tr>
<td>Numerical and Physical Modelling (65501-823)</td>
<td>C</td>
<td>W03-2</td>
<td>15</td>
</tr>
<tr>
<td>Coastal & Port Structures (65528-854)</td>
<td>C</td>
<td>W03-3</td>
<td>15</td>
</tr>
<tr>
<td>Coasts & Ports and the Environment (65536-855)</td>
<td>C</td>
<td>W03-4</td>
<td>15</td>
</tr>
<tr>
<td>Port Planning and Design (65552-832)</td>
<td>C</td>
<td>W04-1</td>
<td>15</td>
</tr>
<tr>
<td>Port Infrastructure and Equipment (65579-864) *</td>
<td>C</td>
<td>W04-3</td>
<td>-</td>
</tr>
<tr>
<td>Dredging and Port Maintenance (65587-865)</td>
<td>E</td>
<td>W04-4</td>
<td>15</td>
</tr>
<tr>
<td>Coastal Engineering Short Course *</td>
<td>B+C</td>
<td>W03-0</td>
<td>-</td>
</tr>
<tr>
<td>Port Engineering Short Course *</td>
<td>B+C</td>
<td>W04-0</td>
<td>-</td>
</tr>
</tbody>
</table>

LEGEND:
- C = Compulsory Module, E = Elective Module, B = Block

* **Short course:** 1 week full time attendance within the semester; **Students do not attain credits with Short Courses** but Port & Coastal Eng. students must attend all 3.

Module: 3.5 weeks with one 4-hour lecture normally on Tuesday and Thursday mornings followed by assessment.

Modules from other Departments or Faculties
- Full timers and part timers have same module load (no compulsory extra courses for full timers)
- M Eng. (Research) need to pass 5 modules minimum (5 of which are compulsory) + attendance of all 3 Short Courses as prerequisite for submitting a thesis.
- M Eng. (Structured) need to pass 8 modules: 4 coastal & 2 port and 2 common faculty modules (from Appendix IV, as discussed in Sections 3 & 6 and Appendix II) + attendance of all 3 above Short Courses as prerequisite for submitting a project report.
APPENDIX II: COURSE MODULE SYLLABI

The content descriptions below are arranged alphabetically, firstly according to specialisation field and then according to module name.

Construction Engineering and Management

NOTE: MEng (R) students in Construction Engineering and Management will be expected to take 3 course modules from Construction Engineering and Management, and 2 from other disciplines.

PROJECT RISK MANAGEMENT (10851-812)

The course considers construction risks management as experienced by all parties involved in construction projects, including the client (owner), consultant and contractor. Principles of risk management is covered, including identification of risks and compilation of risks registers, risk probability and impact, risk prioritization matrices, assignment and monitoring. Advanced risk management methods such as Monte Carlo analyses are presented. The course includes a presentation of software used in the construction environment.

ENGINEERING AND CONSTRUCTION I [LAW] (10824-842)

The course aims to provide delegates with a comprehension of the principles which form the basis of standard construction contracts. It provides the contracts manager with insight to understand contractual relationships and how these are achieved through standard contracts. The course provides an introduction to contract law with specific reference to the implication of contract law and its application in standard construction contracts.

The course demonstrates how risk is allocated and how contracts relate to the principles applicable to the management of a contract. The shortcomings of standard contracts are pointed out and how these should be addressed at project level. A comparison is drawn between the local standard contracts (GCC and JBCC) and international contracts (FIDIC and NEC). In addition, a module is presented on performance guarantees and dispute resolution.

Construction procurement models are also addresses including PPP, design build, and others.

CONSTRUCTION PROJECT MANAGEMENT (10821-812)

The course addresses a variety of topics in construction site management which are not covered in the other courses. It includes aspects of labour employment agreements, construction plant management, and project controls (planning and scheduling the project, developing the cost estimate, monitoring project progress and costs, forecasting final costs and schedule results).

Cooperation and coordination between designer and contractor is presented for formulating a conceptual design which includes precast and in-situ concrete options. Schemes and philosophies of organizing a construction site are analyzed and discussed. It also includes topics such as formwork systems and formwork design.

CONSTRUCTION MANAGEMENT PROGRAMME [CMP] (874 13861)

CMP website for details: www.cmp.sun.ac.za

The CMP is a middle management programme for engineers and other practitioners who have the potential for advancement into corporate management. Due to dramatic changes and degree of uncertainty in the business environment it is also a most relevant (if not essential) professional development programme.
The relevance of the programme to the industry and the country is one of the primary reasons why senior managers and other professionals enroll in the programme.

In the context of the CMP, the construction sector includes client and owner organizations, consultants, designers, project managers and contractors.

The CMP has an international reputation for excellence, established over many years. It was first presented in 1976 and has been in constant demand despite periodic lower levels of investment in construction and reduction in capacity this past decade.

The CMP is presented annually (or bi-annually) over a period of four weeks using the total emersion learning methodology to expose delegates to the very latest theories, tools and techniques in all aspects of business management in the construction sector.

An extended list of high profile international and South African speakers participate in the presentation of the programme.

Geotechnical Engineering

APPLIED GEOMECHANICS (10814-812)

ADVANCED GEOTECHNICS (10809-812)
Basic Reliability Concepts and SANS 10160:2010 reliability background, calibration of partial factors, background to SANS 10160:2010; Geotechnical uncertainties: soil property uncertainties, model uncertainty, treatment of uncertainties, Ground investigations: overview of ground inspection practices in SA, Selection of design parameters: characteristic value of geotechnical parameters, statistical methods; Introduction to SANS 10160-5: Basis of geotechnical design and actions; Analysis and limit state design of shallow foundations; Analysis and limit state design of pile foundations; Analysis and limit state design of retaining walls.

FOUNDATION DESIGN (10829-812)
Geotechnical investigations; residual soils in South Africa; serviceability, damage and limiting settlements; bearing capacity and allowable stresses for shallow foundations; elastic settlements; consolidation settlements; soil as elastic plastic material; settlement of normally consolidated clays (soft clays); settlement of sands; mat or raft foundations; soil structure interaction; computer applications.

SOIL BEHAVIOUR (10861-842)
Clay mineralogy and its determination, the clay-water electrolyte system; fabric of coarse and fine soil and its determination; fundamental properties of fine-grained soils; fabric stability, sensitivity, dispersivity, property anisotropy, and collapse behaviour; compressibility and the effects of fabric; shear strength and deformation, the effects of fabric, residual strength, creep and stress relaxation; compaction, fabric of compacted soils, field compaction, special techniques, compaction of organic materials and of clay barriers.
Pavement Engineering

ADVANCED BITUMEN TECHNOLOGY (10785-812)
Crude sources and characteristics (global and local); Bitumen types and composition; Classification of bitumen grades; Trends in bitumen specifications (Performance grading); Bitumen Rheology; Black diagrams; Master Curves; Engineering properties of bitumen; Polymer modification; Performance testing; Quality control and monitoring; Warranty systems; Health Safety and the environment.

FLEXIBLE PAVEMENT DESIGN (10826-842)
Fundamentals of three-dimensional stresses and strains as a basis for the structural design of road pavements. Development of pavement design systems with consideration of traffic loading, function and service level, foundation and material characterization, environmental impact, design strategies and criteria, structural analyses. Consideration of response and distress criteria, performance and deterioration modelling, constructability, maintenance and rehabilitation, economic considerations and optimisation of appropriate pavements for Southern Africa.

PAVEMENT CONSTRUCTION (10841-842)
Contract documentation. Road works including plant requirements, blasting, crushing. Earthworks including mass-haul diagrams. Standard specifications (COTO) and project specifications. Quality control and acceptance control with emphasis on statistical procedures, including background and application. Production and construction of hot-mix asphalt, special mixes (thin and ultra-thin surfacing), additives and modifiers. Construction of surface seals. Preventative and corrective maintenance, recycling (in-plant and in-place; cold and hot), overlay construction, labour intensive methods. Product Performance Guarantee systems. New roles of road construction industry partners.

PAVEMENT EVALUATION AND REHABILITATION (11206-812)

PAVEMENT MANAGEMENT SYSTEMS (10844-842)
Pavement systems, monitoring of distress and deterioration, establishment of appropriate performance models and limiting criteria. Validation of design methods, diagnostic methods. Rehabilitation design. Pavement Management systems, tools and methods for data acquisition, visual inspections, use of functional and structural measurements, maintenance and rehabilitation strategies, economic analysis including road user costs, prioritisation and optimisation procedures, program M Eng (R) and case studies. In addition, specifically for Gravel Road Management: Structural capacity; Basic material properties and gravel performance modelling; Soil stabilizers; Visual condition assessment; Pavement condition description; Appropriate maintenance measures; HDM for unsurfaced Road Management; Borrow pits and environmental issues.

PAVEMENT MATERIALS I (GRANULAR & CEMENTED) (10845-812)
The use of natural and crushed soils and rocks as road foundation and layerworks in pavement structures. Relevant climatic considerations and problem areas. Compaction theory, practise and laboratory versus field considerations. Laboratory and field testing of materials that are processed, modified, stabilized or cemented. Engineering and behavioural characteristics - environmental and loading considerations. Case
studies including diagnostic investigations. Inclusion of latest practise - local and relevant international trends.

PAVEMENT MATERIALS II (ASPHALT) (10846-812)

Rheology of bituminous binders and mixes related to performance. Bitumen refining and chemical properties, tests and specifications (standard and modified binders). Emulsion and foamed bitumen. Aggregate production, sampling, composition (mineralogy), physical properties. Asphalt composition for base and surfacing, thin and ultra-thin mixes, hot and cold mixes, spatial considerations and volumetrics, mix design (with examples), special mixes. Material properties important for structural and functional design. Factors influencing the performance of seals, selection of binder, seal design and material specifications. Thin layer technology.

PAVEMENT MATERIALS III (BITUMEN STABILISED MATERIALS) (10848-842)

Base bitumen binders and characteristics; Foamed bitumen characteristics; Bitumen emulsion characteristics; Emulsifiers; Aggregate selection and suitability; Marginal materials; Mix design of cold bituminous mixes; Curing; Compaction; Mix volumetrics and spatial composition; Performance of cold mix; (laboratory, APT, LTPP); Pavement Design with BSMs (CIPR); Construction issues; Slurries.

RIGID PAVEMENT DESIGN (10857-812)

Fundamentals of Concrete Pavement Types and Behaviour, Concrete Mix Proportioning and Design Modes of Failure, Supporting layer behaviour, Westergaard Subgrade, Slab Analysis, Slab Support Theory, Environmentally Induced Behavioural Characteristics, Curling and Warping Stresses, Concrete Specifications, Durability, Traffic Characterisation, AASHTO Design Procedure, Mechanistic Design including FEM, South African Mechanistic Design, Reliability, Concrete Pavement Rehabilitation.

Structural Engineering

ADVANCED STRUCTURAL CONCRETE DESIGN (10810-812)

Course contents to be announced or enquire at Secretary, Structural Engineering (natalies@sun.ac.za).

ADVANCED STRUCTURAL STEEL DESIGN (10811-812)

Design of industrial and commercial steel structures to SANS 10162-2005; design of plate girders, crane girders and overhead travelling crane support structures subjected to fatigue loading.

CONTINUUM MECHANICS AND FINITE ELEMENT METHODS (10822-842)

This course presents computational methods for the static analysis of structures, using finite elements. Preliminary basic knowledge of the finite element method would be useful but is not required. A good foundation in matrix and vector algebra and mathematics in general is crucial. Program M Eng (R) exercises in MATLAB allow the student to explore the concepts presented and test their understanding. Basic understanding of program M Eng (R) (not necessarily in MATLAB) will help.

- Tensor algebra
- Strain and stress measures
- Linear elasticity
- Discretisation of differential equations using Galerkin’s method
- Displacement based beams, membranes and volume elements
- Introduction to plates and shells
- Gauss-quadrature and iso-parametric elements
- Contragredient transformations
- Introduction to non-linear analysis (Newton-Raphson)
- Analysis failure and sources of errors
PROBABILITY AND RISK ANALYSIS IN CIVIL ENGINEERING (10850-812)

- Overview of fundamental probability theorems
- Probability models including extreme value distributions
- Joint variables, functions of variables, Markov chains
- Decision analysis, utility criteria, design choices
- Reliability and risk analysis of engineering elements and systems
- Regression analysis, hypothesis tests
- Simulation
- Analysis of variation, experimental design
- Bayesian decision theory:
 - Bayes’ formula
 - Parameter estimation
 - Bayesian probabilities and decision theory.

STRUCTURAL DYNAMICS (10866-812)

This course presents computational methods for the dynamic analysis of structures. A basic understanding of static analysis of structures is necessary. Knowledge of finite element methods is not a prerequisite but will be helpful. Students can take MT11 in one year and MT04 in the following year. Complex and Fourier analysis are introduced in the course, but a good foundation in matrix and vector algebra and mathematics in general is crucial. Program M Eng (R) exercises in MATLAB allow the student to explore the concepts presented and test their understanding. Basic understanding of program M Eng (R) (not necessarily in MATLAB) will help.

Theory

- Dynamic equilibrium equations for linear discrete systems
- Complex numbers
- Steady state harmonic response
- The single degree of freedom oscillator, resonance
- Multiple degrees of freedom, transfer function
- Modal analysis
- Simplified models for low damping, diagonalisation
- Systems with high damping or non-proportional damping
- Fourier analysis, continuous and discrete (Continues on next page)

(Structural Dynamics 811: Continued from previous page)

- Frequency domain analysis
- Introduction to stochastic analysis
- Time domain analysis: Newmark’s method

Applications

- Machine vibration
- Codified earthquake analysis

ADVANCED MECHANICS OF MATERIALS AND MODELLING (AMMM)

The objectives of this course are to:

- Describe fundamental phenomenology of various types of mechanical material behaviour
- Develop an understanding of the mechanisms of elastic, as well as non-elastic deformation of construction materials. Physical mechanisms of non-elastic deformation, including dislocation leading to plasticity in metals, micro-cracking and fracture in brittle materials like concrete, visco-elasticity ...
- Study and learn to apply models in continuum mechanics to describe elastic deformation, as well as non-linear deformation via methods of continuum visco-elasticity, plasticity, damage and fracture mechanics.
• Introduce numerical methods to solve above mentioned models of mechanics for structures with complex geometries, as an introduction to Computational Mechanics.
• Understand background and enable sound application of existing models included in design codes.

Course pre-requisites
A command of strength of materials and structural mechanics, linear algebra, and finite element methods is required. This would normally (but not exclusively) require an appropriate undergraduate BSc (Eng) degree in Civil (structural) engineering, or equivalent and completion of MT04 or a similar course in the finite element method.

CEMENT-BASED MATERIALS

The Cement-based Materials module covers all aspects of concrete as a construction material, including the chemistry, micro structures, mix design, durability, mechanical properties and long term properties. Advanced materials like self-compacting concrete and fibre reinforced concrete are covered as well. Practical aspects of casting and curing of concrete are also included.

Transportation Engineering

GEOMETRIC ROAD DESIGN (10831-812)
Traffic and capacity, design criteria, sight distance, horizontal alignment, vertical alignment, cross-section elements, drainage, intersections, interchanges, pedestrians and cyclists.

PUBLIC TRANSPORT (10853-842)
The role of public transport in the community, system components, integration and co-ordination of different modes, technological status, liaison problems, terminal requirements, costs, effect on the environment and the economy, legislation, management, operation and control.

TRAFFIC ENGINEERING (10874-812)
Capacity and level of service analysis of roads and intersections, traffic characteristics, traffic surveys: volumes and speed, traffic growth, parking studies, traffic impact studies, access management.

TRAFFIC FLOW THEORY (10875-812)
Traffic characteristics, traffic flow studies, traffic flow interaction, traffic flow analysis, intersections, simulation.

TRANSPORT ECONOMICS (21008-812)
Road economics, road transport costs, financing of road projects, transport investment, cost-benefit analysis, project analysis, shadow prices, transport policy, urban transport economics.

TRANSPORTATION PLANNING (10877-812)
Overview of the process, demand estimation, surveys for transportation studies, trip models: trip generation, trip distribution, modal split, trip assignment, road networks, public transport networks, public participation, land use forecasts.

TRANSPORTATION SAFETY (10878-812)
Road design, construction and maintenance, operations, public transport, pedestrian safety, vehicle safety, safety analysis, accident statistics, before-and-after studies, accident costs, economic evaluation, safety programmes, legislation, law enforcement, safety administration, road safety audits.
INTELLIGENT TRANSPORT SYSTEMS (13004-841)
Basic ITS elements, Systems engineering approach for ITS, Technology and communications overview, Overview of application areas including Freeway Management Systems, Public Transport Systems and Arterial Management Systems, New developments such as Connected and Autonomous Vehicles as well as Smart Cities, Big Data in Transportation overview and Applications.

HUMAN FACTORS IN TRAFFIC COLLISIONS (11423-814)
The vast majority of serious and fatal crashes are caused by human error, yet road designers are seldom trained to fully understand how road users function, and the errors they are likely to make. This course examines human behaviour in the context of traffic and identifies what elements of road design and manage are required for a safer road network for all users. The attendee will emerge from the course with a working knowledge of the human factors involved in road safety and with an improved understanding of the principles of safe roads and how these can be achieved in practice.

Water Engineering

DESIGN OF (LARGE) HYDRAULIC STRUCTURES (10834-812)
Project planning and site selection, foundation and construction materials, embankment dams: earth fill, embankment dams: rock fill, concrete & rollcrete dams, masonry dams, hydraulic design of flow gauging weirs, SANCOLD Dam design floods and freeboard requirements, hydraulic design of spillways and outlet works, Hydraulic design of stilling basins and energy dissipators, reservoir sedimentation, dam safety and monitoring, dam rehabilitation, construction of small dams, dam management; Hydropower project and Environmental aspects,

FLOOD HYDROLOGY (10827-812)
General
• Monitoring the processes of the hydrological cycle
• Catchments as impacted systems
• Philosophy of hydrological design
Design Flood Determination
• Empirical methods
• Probabilistic analysis
• Deterministic methods
• Flood routing
• Problems of large catchments
• Dam safety procedures
• Urban storm water modelling
• Environmental water requirements
• River system planning concepts

STORM WATER AND DRAINAGE SYSTEMS (10858-842)
• Urban drainage and sustainable designs
• Storm water modelling and management
• Floodlines and flood hazards
• Road drainage
• River bank erosion protection
• Culverts and bridge hydraulics
• Hydrodynamic modelling of flood levels and routing
SPECIAL HYDRAULICS (10862-812)
Course contents to be announced or enquire at Course Division (civilcourses@sun.ac.za)

SPECIAL HYDROLOGY (10864-842)
Course contents to be announced or enquire at Course Division (civilcourses@sun.ac.za)

PIPELINE HYDRAULICS AND PUMPSTATION DESIGN

• Pipe flow theory, pipe material & hydraulic roughness, secondary losses and pipe ageing
• Municipal water demand, peak flows, guidelines and the impact of Water Demand Management
• Pipe material selection: PVC, HDPE, concrete, steel pipes, etc.
• Hydraulic Pressure Transients in pipelines
• Pipeline design considerations
• Air valves & design principles
• Pipeline corrosion causes & mitigation
• Design of river abstraction works: Theory and case studies
• Pump selection and high lift pump station design
• CFD modelling to inform pump station design
• Environmental considerations during pipeline design and construction
• Control Valves: pressure, flow rate, water level, etc.
• Pipeline surveillance & rehabilitation

WATER AND WASTEWATER TREATMENT

To provide the latest and most relevant theory on Water & Wastewater treatment. Application of the theory in practise, the latest technology, the latest government legislation, as well as practical application of the theory in the maintenance and operation of water & wastewater treatment works.

• The National Water Act and Water Services Act
• Theory of wastewater treatment and Water treatment
• Theory and application of external metrification
• Package plants
• Membrane technology
• Operation and maintenance
• Environmental impact assessment procedures and legislation

WATER NETWORKS AND SERVICES PLANNING (13000-811)

The objective of this course is to provide the latest information regarding water network planning and modelling, incorporating the hydraulics, design, construction and maintenance of all piped water networks. The focus of the course is on urban services, demand estimation and hydraulic analysis. The course is presented biennially. Specific sessions covered in the course include:

• Hydraulics of flow in closed conduits
• Demand modelling
• Pipe network modelling and design
• Residential end-use modelling
• Water pressure and pressure management
• Pipes and pipe materials
• Practical considerations and case studies
• Water network master planning
Environmental issues
System rehabilitation
Operations and maintenance
Water demand management and water conservation

This course also provides the latest information regarding sewer systems, their planning and design. The objective is to move Participants towards more effective planning, design, construction and maintenance of sewer systems. The focus of the course is on waterborne sewer systems and the latest technology with regards to this component of urban drainage. Topics addressed include pipes, modelling, hydraulics, pumps and practical challenges pertaining to sewers and sewer flow in pipes. Most of the sessions cover municipal sewers, although bulk sewers and general topics such as management are also addressed. The course is presented biennially. Specific sessions covered in the course include:

- Hydraulics of sewer flow in pipes (partially full pipe flow)
- Sewer network planning and design
- Sewer flow estimation
- Domestic point-of-use wastewater discharges
- Sewer system modelling
- Alternatives to conventional sewers, including vacuum sewers and solids-free sewers
- Trenchless technology and rehabilitation
- Reuse of sewerage and grey water
- Case studies and practical implications
- Sewer pumps and rising mains
- Sewer pipes and pipe materials
- Handling insoluble matter in sewerage flow, including sand traps

WATER RESOURCES MANAGEMENT (10879-842)

- Water balance in catchments
- Demand projection in catchments
- Modelling runoff generation in catchments
- Estimation of impacts of stream flow reduction activities
- Storage/yield/reliability concepts
- System analysis modelling
- Water quality

COASTAL ENGINEERING SHORT COURSE [W03-0]

(5-day block course [usually August every second year; 2020, 2022, 2024...])
Block course/seminar on wave mechanics & wave climate, coastal processes, field data collection and analysis, numerical & physical modelling, coastal structures and the coast, ports & the environment. Case studies and a laboratory visit are usually included.

COASTAL PROCESSES & DESIGN, FIELD DATA COLLECTION & ANALYSIS [W03-1] (65498-822)

- Water wave mechanics (including breaking, refraction, shoaling, diffraction and reflection)
- Coastal morphology and sediment transport
- Tides, currents and wind
- Estuaries
- Wave, wind and current recording and analysis
NUMERICAL & PHYSICAL MODELLING [W03-2] (65501-823)

- Physical modelling scale laws, techniques and case studies
- Numerical modelling of waves, sediment transport, flows, water-levels
- Introduction to MIKE21, SWAN and DELFT3D Coastal modelling packages
- Mud processes
- Design of beaches
- Long waves and ship motions

COASTAL & PORT STRUCTURES, DESIGN [W03-3] (65528-854)

- Wave run-up, overtopping, reflection and transmission
- Rubble mound and vertical breakwaters
- Piled structures, including open coast mooring jetties
- Groynes and revetments for coastal protection
- Quay walls
- Design and construction of ocean outfalls
- Scour

COASTS, PORTS & THE ENVIRONMENT [W03-4] (65536-855)

- Integrated coastal zone management
- Water quality
- Dilution and dispersion of effluent
- Environmental impact assessment
- Port pollution control
- EIA case studies

PORT ENGINEERING SHORT COURSE [W04-0]

(5-day block course [usually August every second year; 2021, 2023, 2025...])

Block course/seminar on merchant shipping, port and terminal planning (including port simulation), port design, port management, port maintenance, dredging, surveys, wave climate, numerical & physical modelling, aids to navigation, ship navigation and case studies. A laboratory visit is usually included.

PORT PLANNING & DESIGN [W04-1] (65552-832)

- Breakwater and access channel layout
- Turning areas and basin layouts and dimensions
- Port simulation to assist in port planning
- Port planning
- Port design (container, general cargo, ro-ro, liquid bulk, dry bulk and fishery terminals)
- Small-craft harbour design

PORT INFRASTRUCTURE AND HANDLING EQUIPMENT SHORT COURSE [W04-3] (65579-864)

- Shipping, ship sizes and trade
- Cargo handling equipment for marine terminals
- Land infrastructure
- Cargo link with rail and road to industry
• Dry docks for ship repairs
• Fenders and bollards
• Aids to navigation

DREDGING AND INFRASTRUCTURE MAINTENANCE [W04-4] (65587-865)

• Floating dredging equipment, operation and environmental constraints
• Sand bypassing systems
• Breakwater monitoring and maintenance
• Capital, maintenance and mud dredging
• Physical impacts of dredging
• Hydrographic, sub-bottom and sidescan sonar surveys
• Marine measurements (waves, currents and winds)

NUMERICAL SIMULATION OF FLUIDS TW888

For contents, refer to Numerical Simulation of Fluids under Appendix III below
APPENDIX III:

COURSE MODULE SYLLABUS FOR MATHEMATICS AND APPLIED MATHEMATICS

Modules are arranged alphabetically according to module name.

Mathematics and Applied Mathematics

LINEAR ALGEBRA 38571
Host: Division of Mathematics, Department of Mathematical Sciences, Faculty of Science
Quadratic forms, positive definite matrices, matrix norms; perturbation theory; special matrices (symmetric, band sparse); least squares; Householder reflections and Givens rotations; iterative methods for linear equations, including conjugate gradient and multi-grid methods.
Please contact Prof D Laurie of the Division of Mathematics regarding module content and availability: dpl@sun.ac.za

PARTIAL DIFFERENTIAL EQUATIONS 20753834
Host: Division of Applied Mathematics, Department of Mathematical Sciences, Faculty of Science
Difference methods for parabolic, hyperbolic and elliptic partial differential equations.
Please contact Dr Karin Hunter of the Division of Applied Mathematics regarding module content and availability: karin@sun.ac.za

NUMERICAL SIMULATION OF FLUIDS TW888 - 62820 888
General numerical methods for solving flow equations; finite difference/volume methods; procedures for the simulation of diffusive and convective processes; boundary values; solvers such as the SIMPLE range of algorithms; solving of introductory problems on computer.
Host: Division of Applied Mathematics, Department of Mathematical Science, Faculty of Science.
Please contact Dr GJF Smit of the Division, Department of Applied Mathematics regarding module content and availability: fsmit@sun.ac.za

POROUS MEDIA TW891 - 62839 891
Differential and integral calculus of volume averages in two phase media and its use in the mathematical modelling of transport processes in porous media; the rectangular unit cell model.
Host: Division of Applied Mathematics, Department of Mathematical Science, Faculty of Science.
Please contact Dr JP du Plessis of the Division, Department of Applied Mathematics regarding module content and availability: jpdpsun.ac.za

SERIES SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS TW832 - 53783 832 (OLD: TW03)
Fourier series applied to the solution of partial differential equations. Frobenius method, Bessel functions for ordinary differential equations.
Host: Division of Applied Mathematics, Department of Mathematical Sciences, Faculty of Science
Please contact Dr M Maritz, of the Division of Applied Mathematics regarding module content and availability: mmaritz@sun.ac.za
APPENDIX IV:
SYLLABI OF COMMON FACULTY MODULES

Modules are arranged alphabetically according to module name.

Faculty Modules

ADVANCED TOPICS IN ENGINEERING MANAGEMENT 11748-873
Host: Department of Industrial Engineering

The purpose of the module is to present principles of general management within the context of technical disciplines. The course themes include the business environment and strategic management on a firm level, touching on the role of innovation and technology for competitiveness on a systems level from international and national perspectives.

The course will include a significant focus on tools and techniques for technology and innovation management exploring the link between technology management and business management taking a capabilities approach. These capabilities include acquisition, protection, exploitation, identification and selection. We relate traditional approaches to technology management to what it means for the context of the fourth industrial revolution, platform economies and innovation platforms.

The functions of engineering management, namely planning, organising, leading and controlling will also be discussed. This will include a specific focus on human resource management, both insofar as managing projects, people and groups is concerned as well as aspects of labour relations and specifically the labour law and contractual requirements in South Africa. We contextualise the above under the theme of “leadership”, with an exploration of different leadership styles, communication and motivation.

NUMERICAL METHODS TW 36323 - 876
Host: Division of Applied Mathematics, Department of Mathematical Sciences, Faculty of Science

The module focuses on matrix computations. We study the effective solution of linear systems, involving both square and rectangular matrices (least-squares). Direct as well as iterative methods are considered, with the emphasis on sparse matrices and matrices with structure. Numerical methods for the eigenvalue problem are also considered. Pitfalls such as numerical instability and ill-conditioning are pointed out. Model problems are taken from partial differential equations, data analysis and image processing. Theory, algorithmic aspects, and applications are emphasized in equal parts.

PROJECT ECONOMICS & FINANCE 58157-812
Host: Department of Civil Engineering

The module focuses on how to finance a business opportunity (project) that can be isolated from the rest of a company’s business activities. Financing through a combination of debt and equity are discussed, based on the future profitability of the project where project cash flow is the main source of capital recovery and the project assets are the only collateral. The concepts of construction loans and public-private partnerships are discussed. A number of case studies will be covered in the module, including projects to construct a bridge, a satellite and a wind turbine farm.

Current module content:
- Infrastructure and development finance: Sources of business finance and private sector project financing models.
- Review of: time value of money / discounted cash flow / interest calculations.
- Basic accounting statements (balance sheet, income and cash flow statements.
- Costing and management accounting - theory / techniques and costing system concepts.
- Ratio analysis, from basic ratios to the DuPont approach.
- Economic analysis of investment decisions.
- Market valuation (EVA and MVA).
- Value drivers in the company, sustainability and the Balanced Scorecard.
- The national accounts and economic growth.
- Feasibility studies and techno economic analysis:
 - System identification, parameter identification, environment and system boundary
 - Definition, environmental scanning, system modelling and simulation concepts, modelling
 - Risk and uncertainty in infrastructure finance and project development.
- Materials, labour and equipment: Impact of required service and quality levels. Cost estimation and cost controls of construction projects.
- Revenue stream estimating and modelling. Financing models.

PROJECT MANAGEMENT 51993-873
Host: Department of Industrial Engineering

The module focuses on advanced topics in project management, and it is expected that participants have either attended a project management course or have experience in managing projects. The module builds on the traditional project scheduling by addressing critical chain management and looks at managing project risks through the identification and assessment of risk potentials and mitigating strategies, including resource / cost management and contingency planning. The selection of appropriate teams and structures to facilitate contract management are discussed, along with executing project leadership through proper communication channels. The importance of procurement, from tender procedures through to supplier selection will be highlighted. The different nuances between commercial and research projects will be explained.

DATA ANALYTICS 13856-874
Host: Department of Industrial Engineering

Data science is the application of computational, statistical, and machine learning techniques to gain insight into real world problems. The main focus of this module is on the data science project life cycle, specifically to gain a clear understanding of the five steps in the data science process, namely obtain, scrub/wrangling, explore, model, and interpret. Each of these steps will be studied with the main purpose to gain an understanding of the requirements, complexities, and tools to apply to each of these life cycle steps. Students will understand the process of constructing a data pipeline, from raw data to knowledge. Case studies from the engineering domain will be used to explore each of these steps.
<table>
<thead>
<tr>
<th>Position and function</th>
<th>Name</th>
<th>Tel. No.</th>
<th>E-mail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chairman: Department of Civil Engineering - General academic matters</td>
<td>Prof JA Wium</td>
<td>+27-(0)21-808 4348</td>
<td>janw@sun.ac.za</td>
</tr>
<tr>
<td>Administrative Officer: Postgraduate Studies - Application for admittance: http://web-apps.sun.ac.za/eAansoek2/alg.jsp?Tl=1</td>
<td>Mrs AJ de Wet</td>
<td>+27-(0)21-808 4404</td>
<td>amandadw@sun.ac.za</td>
</tr>
<tr>
<td>Faculty Secretary - Registration and fees</td>
<td>Mrs N Hartzenburg</td>
<td>+27-(0)21-808 4835</td>
<td>nicolepa@sun.ac.za</td>
</tr>
<tr>
<td>Departmental coordinator for Postgraduate studies</td>
<td>Dr IC Brink</td>
<td>+27-(0)21-808 4195</td>
<td>icbrink@sun.ac.za</td>
</tr>
<tr>
<td>International Office: Applications by all foreign students http://www0.sun.ac.za/international/</td>
<td>Ms C de Doncker</td>
<td>+27-(0)21-808 2566</td>
<td>cnm@sun.ac.za, interoff@sun.ac.za</td>
</tr>
</tbody>
</table>

FIELD OF SPECIALISATION, RESEARCH PROGRAMMES, RESEARCH FUNDS

<table>
<thead>
<tr>
<th>Division</th>
<th>Name</th>
<th>Tel. No.</th>
<th>E-mail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Division of Water Engineering, Port and Coastal Engineering</td>
<td>Prof HE Jacobs</td>
<td>+27-(0)21-808 4059</td>
<td>hejacobs@sun.ac.za</td>
</tr>
<tr>
<td>Division of Transportation and Geotechnical Engineering</td>
<td>Prof M Sinclair</td>
<td>+27-(0)21-808 3838</td>
<td>msinclair@sun.ac.za</td>
</tr>
<tr>
<td>Division of Structural Engineering and Civil Engineering Informatics</td>
<td>Prof C Viljoen</td>
<td>+27-(0)21-808 4444</td>
<td>cbarnardo@sun.ac.za</td>
</tr>
<tr>
<td>Division of Construction Engineering and Management</td>
<td>Prof JA Wium</td>
<td>+27-(0)21-808 4348</td>
<td>janw@sun.ac.za</td>
</tr>
</tbody>
</table>

ADDRESS:

Postal Address:
Department of Civil Engineering
University of Stellenbosch
Private Bag X1, Matieland,
STELLENBOSCH, 7602,
South Africa

Physical Address:
Department of Civil Engineering
University of Stellenbosch
Banhoek Road
7600, STELLENBOSCH,
South Africa

Civil Engineering Homepage: http://www.civeng.sun.ac.za
CHANGES IN THIS BROCHURE

- Important dates: Academic Calendar for 2020
- Appendix I (Schedule for Course modules)
- Admissions and Pass requirements for the PDE Programme (BTech students - PDE programme - 4.1.1)
- Port and Coastal Engineering (Section 2.5.7)
- Port and Coastal Engineering Section 6.3.8
- Enquiries table
- Appendix II: Construction Engineering and Management
- Sunscholar Copyright permission (section 2.2 and 5)
- Sections regarding Construction Management
- Sections regarding Structural Engineering
- Section 8 (Fees)